# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. test_that("Schema metadata", { s <- schema(b = double()) expect_equal(s$metadata, empty_named_list()) expect_false(s$HasMetadata) s$metadata <- list(test = TRUE) expect_identical(s$metadata, list(test = "TRUE")) expect_true(s$HasMetadata) s$metadata$foo <- 42 expect_identical(s$metadata, list(test = "TRUE", foo = "42")) expect_true(s$HasMetadata) s$metadata$foo <- NULL expect_identical(s$metadata, list(test = "TRUE")) expect_true(s$HasMetadata) s$metadata <- NULL expect_equal(s$metadata, empty_named_list()) expect_false(s$HasMetadata) expect_error( s$metadata <- 4, "Key-value metadata must be a named list or character vector" ) }) test_that("Table metadata", { tab <- Table$create(x = 1:2, y = c("a", "b")) expect_equal(tab$metadata, empty_named_list()) tab$metadata <- list(test = TRUE) expect_identical(tab$metadata, list(test = "TRUE")) tab$metadata$foo <- 42 expect_identical(tab$metadata, list(test = "TRUE", foo = "42")) tab$metadata$foo <- NULL expect_identical(tab$metadata, list(test = "TRUE")) tab$metadata <- NULL expect_equal(tab$metadata, empty_named_list()) }) test_that("Table R metadata", { tab <- Table$create(example_with_metadata) expect_output( print(tab$metadata), "$r$columns$c$columns$c1$attributes$extra_attr", fixed = TRUE ) expect_equal_data_frame(tab, example_with_metadata) }) test_that("R metadata is not stored for types that map to Arrow types (factor, Date, etc.)", { tab <- Table$create(example_data[1:6]) expect_null(tab$metadata$r) expect_null(Table$create(example_with_times[1:3])$metadata$r) }) test_that("R metadata is not stored for ExtensionType columns", { tab <- Table$create( x = vctrs::new_vctr(1:5, class = "special_integer") ) expect_null(tab$metadata$r) }) test_that("classes are not stored for arrow_binary/arrow_large_binary/arrow_fixed_size_binary (ARROW-14140)", { raws <- charToRaw("bonjour") binary <- Array$create(list(raws), binary()) large_binary <- Array$create(list(raws), large_binary()) fixed_size_binary <- Array$create(list(raws), fixed_size_binary(7L)) expect_null(RecordBatch$create(b = binary)$metadata$r) expect_null(RecordBatch$create(b = large_binary)$metadata$r) expect_null(RecordBatch$create(b = fixed_size_binary)$metadata$r) expect_null(Table$create(b = binary)$metadata$r) expect_null(Table$create(b = large_binary)$metadata$r) expect_null(Table$create(b = fixed_size_binary)$metadata$r) }) test_that("Garbage R metadata doesn't break things", { tab <- Table$create(example_data[1:6]) tab$metadata$r <- "garbage" expect_warning( as.data.frame(tab), "Invalid metadata$r", fixed = TRUE ) # serialize data like .serialize_arrow_r_metadata does, but don't call that # directly since it checks to ensure that the data is a list tab <- Table$create(example_data[1:6]) tab$metadata$r <- rawToChar(serialize("garbage", NULL, ascii = TRUE)) expect_warning( as.data.frame(tab), "Invalid metadata$r", fixed = TRUE ) bad <- new.env(parent = emptyenv()) makeActiveBinding("columns", function() stop("This should not run"), bad) tab$metadata <- list(r = rawToChar(serialize(bad, NULL, ascii = TRUE))) expect_warning( as.data.frame(tab), "Invalid metadata$r", fixed = TRUE ) # https://hiddenlayer.com/research/r-bitrary-code-execution/ tab$metadata <- list(r = "A 3 262913 197888 5 UTF-8 5 252 6 1 262153 7 message 2 16 1 262153 32 arbitrary\040code\040was\040just\040executed 254 ") expect_message( expect_warning( as.data.frame(tab), "Invalid metadata$r", fixed = TRUE ), NA ) }) test_that("Complex or unsafe attributes are pruned from R metadata, if they exist", { tab <- Table$create(example_data[1:6]) bad <- new.env() makeActiveBinding("class", function() stop("This should not run"), bad) tab$metadata <- list(r = rawToChar(serialize(list(attributes = bad), NULL, ascii = TRUE))) expect_warning( as.data.frame(tab), "Potentially unsafe or invalid elements have been discarded from R metadata. i Type: \"environment\" > If you trust the source, you can set `options(arrow.unsafe_metadata = TRUE)` to preserve them.", fixed = TRUE ) # You can set an option to allow them through. # It still warns, just differently, and it doesn't prune the attributes withr::local_options(list("arrow.unsafe_metadata" = TRUE)) expect_warning( expect_warning( as.data.frame(tab), "R metadata may have unsafe or invalid elements i Type: \"environment\"" ), # This particular example ultimately fails because it's not a list "Invalid metadata$r", fixed = TRUE ) }) test_that("Metadata serialization compression", { # attributes that (when serialized) are just under 100kb are not compressed, # and simply serialized strings <- as.list(rep(make_string_of_size(1), 98)) small <- .serialize_arrow_r_metadata(strings) expect_equal( object.size(small), object.size(rawToChar(serialize(strings, NULL, ascii = TRUE))) ) # Large strings will be compressed large_strings <- as.list(rep(make_string_of_size(1), 100)) large <- .serialize_arrow_r_metadata(large_strings) expect_lt( object.size(large), object.size(rawToChar(serialize(large_strings, NULL, ascii = TRUE))) ) # and this compression ends up being smaller than even the "small" strings expect_lt(object.size(large), object.size(small)) # However strings where compression + serialization is not effective are no # worse than only serialization alone large_few_strings <- as.list(rep(make_random_string_of_size(50), 2)) large_few <- .serialize_arrow_r_metadata(large_few_strings) expect_equal( object.size(large_few), object.size(rawToChar(serialize(large_few_strings, NULL, ascii = TRUE))) ) # But we can disable compression op <- options(arrow.compress_metadata = FALSE) on.exit(options(op)) large_strings <- as.list(rep(make_string_of_size(1), 100)) large <- .serialize_arrow_r_metadata(large_strings) expect_equal( object.size(large), object.size(rawToChar(serialize(large_strings, NULL, ascii = TRUE))) ) }) test_that("RecordBatch metadata", { rb <- RecordBatch$create(x = 1:2, y = c("a", "b")) expect_equal(rb$metadata, empty_named_list()) rb$metadata <- list(test = TRUE) expect_identical(rb$metadata, list(test = "TRUE")) rb$metadata$foo <- 42 expect_identical(rb$metadata, list(test = "TRUE", foo = "42")) rb$metadata$foo <- NULL expect_identical(rb$metadata, list(test = "TRUE")) rb$metadata <- NULL expect_equal(rb$metadata, empty_named_list()) }) test_that("RecordBatch R metadata", { expect_equal_data_frame(record_batch(example_with_metadata), example_with_metadata) }) test_that("R metadata roundtrip via parquet", { skip_if_not_available("parquet") tf <- tempfile() on.exit(unlink(tf)) write_parquet(example_with_metadata, tf) expect_identical(read_parquet(tf), example_with_metadata) }) test_that("R metadata roundtrip via feather", { tf <- tempfile() on.exit(unlink(tf)) write_feather(example_with_metadata, tf) expect_identical(read_feather(tf), example_with_metadata) }) test_that("haven types roundtrip via feather", { tf <- tempfile() on.exit(unlink(tf)) write_feather(haven_data, tf) expect_identical(read_feather(tf), haven_data) }) test_that("Date/time type roundtrip", { rb <- record_batch(example_with_times) expect_r6_class(rb$schema$posixlt$type, "VctrsExtensionType") expect_equal_data_frame(rb, example_with_times) }) test_that("metadata keeps attribute of top level data frame", { df <- structure(data.frame(x = 1, y = 2), foo = "bar") tab <- Table$create(df) expect_identical(attr(as.data.frame(tab), "foo"), "bar") expect_equal_data_frame(tab, df) }) test_that("metadata drops readr's problems attribute", { readr_like <- tibble::tibble( dbl = 1.1, not_here = NA_character_ ) attributes(readr_like) <- append( attributes(readr_like), list(problems = tibble::tibble( row = 1L, col = NA_character_, expected = "2 columns", actual = "1 columns", file = "'test'" )) ) tab <- Table$create(readr_like) expect_null(attr(as.data.frame(tab), "problems")) }) test_that("Row-level metadata (does not by default) roundtrip", { # First tracked at ARROW-10386, though it was later determined that row-level # metadata should be handled separately ARROW-14020, ARROW-12542 df <- data.frame(x = I(list(structure(1, foo = "bar"), structure(2, baz = "qux")))) tab <- Table$create(df) r_metadata <- tab$r_metadata expect_type(r_metadata, "list") expect_null(r_metadata$columns$x$columns) # But we can re-enable this / read data that has already been written with # row-level metadata withr::with_options( list("arrow.preserve_row_level_metadata" = TRUE), { tab <- Table$create(df) expect_identical(attr(as.data.frame(tab)$x[[1]], "foo"), "bar") expect_identical(attr(as.data.frame(tab)$x[[2]], "baz"), "qux") } ) }) test_that("Row-level metadata (does not) roundtrip in datasets", { # First tracked at ARROW-10386, though it was later determined that row-level # metadata should be handled separately ARROW-14020, ARROW-12542 skip_if_not_available("dataset") skip_if_not_available("parquet") library(dplyr, warn.conflicts = FALSE) df <- tibble::tibble( metadata = list( structure(1, my_value_as_attr = 1), structure(2, my_value_as_attr = 2), structure(3, my_value_as_attr = 3), structure(4, my_value_as_attr = 3) ), int = 1L:4L, part = c(1, 3, 2, 1) ) dst_dir <- make_temp_dir() withr::local_options("arrow.preserve_row_level_metadata" = TRUE) expect_warning( write_dataset(df, dst_dir, partitioning = "part"), "Row-level metadata is not compatible with datasets and will be discarded" ) # Reset directory as previous write will have created some files and the default # behavior is to error on existing dst_dir <- make_temp_dir() # but we need to write a dataset with row-level metadata to make sure when # reading ones that have been written with them we warn appropriately fake_func_name <- write_dataset fake_func_name(df, dst_dir, partitioning = "part") ds <- open_dataset(dst_dir) expect_warning( df_from_ds <- collect(ds), "Row-level metadata is not compatible with this operation and has been ignored" ) expect_equal( dplyr::arrange(df_from_ds, int), dplyr::arrange(df, int), ignore_attr = TRUE ) # however there is *no* warning if we don't select the metadata column expect_warning( df_from_ds <- ds %>% dplyr::select(int) %>% dplyr::collect(), NA ) }) test_that("Dataset writing does handle other metadata", { skip_if_not_available("dataset") skip_if_not_available("parquet") dst_dir <- make_temp_dir() tab <- Table$create(example_with_metadata) # Tack on extra non-R metadata: sfarrow 0.4.1 relies on this tab$metadata[["other_stuff"]] <- "hello" write_dataset(tab, dst_dir, partitioning = "b") ds <- open_dataset(dst_dir) expect_equal( ds %>% # partitioning on b puts it last, so move it back select(a, b, c, d) %>% collect(), example_with_metadata ) # Check for that extra metadata in the schema: expect_equal(ds$metadata$other_stuff, "hello") }) test_that("dplyr with metadata", { skip_if_not_available("dataset") compare_dplyr_binding( .input %>% collect(), example_with_metadata ) compare_dplyr_binding( .input %>% select(a) %>% collect(), example_with_metadata ) compare_dplyr_binding( .input %>% mutate(z = b * 4) %>% select(z, a) %>% collect(), example_with_metadata ) compare_dplyr_binding( .input %>% mutate(z = nchar(d)) %>% select(z, a) %>% collect(), example_with_metadata ) # dplyr drops top-level attributes if you do summarize, though attributes # of grouping columns appear to come through compare_dplyr_binding( .input %>% group_by(d) %>% summarize(n()) %>% collect(), example_with_metadata ) # Same name in output but different data, so the column metadata shouldn't # carry through compare_dplyr_binding( .input %>% mutate(a = b) %>% select(a) %>% collect(), example_with_metadata ) }) test_that("grouped_df metadata is recorded (efficiently)", { grouped <- group_by(tibble(a = 1:2, b = 3:4), a) expect_s3_class(grouped, "grouped_df") grouped_tab <- Table$create(grouped) expect_r6_class(grouped_tab, "Table") expect_equal(grouped_tab$metadata$r$attributes$.group_vars, "a") }) test_that("grouped_df non-arrow metadata is preserved", { simple_tbl <- tibble(a = 1:2, b = 3:4) attr(simple_tbl, "other_metadata") <- "look I'm still here!" grouped <- group_by(simple_tbl, a) grouped_tab <- arrow_table(grouped) expect_equal( attributes(collect.ArrowTabular(grouped_tab))$other_metadata, "look I'm still here!" ) }) test_that("data.frame class attribute is not saved", { df <- data.frame(x = 1:5) df_arrow <- arrow_table(df) expect_null(df_arrow$r_metadata$attributes) df <- data.frame(x = 1:5) attributes(df)$foo <- "bar" df_arrow <- arrow_table(df) expect_identical(df_arrow$r_metadata, list(attributes = list(foo = "bar"), columns = list(x = NULL))) })