# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. skip_if_not_available("dataset") skip_on_cran() # DuckDB 0.7.1-1 may have errors with R<4.0 skip_on_r_older_than("4.0") # this test needs to be the first one since all other test blocks are skipped # if duckdb is not installed test_that("meaningful error message when duckdb is not installed", { # skipping if duckdb is installed since we're testing the to_duckdb function's # complaint when a user tries to call it, but duckdb isn't available skip_if(requireNamespace("duckdb", quietly = TRUE)) ds <- InMemoryDataset$create(example_data) expect_error( to_duckdb(ds), regexp = "Please install the `duckdb` package to pass data with `to_duckdb()`.", fixed = TRUE ) }) skip_if_not_installed("duckdb", minimum_version = "0.3.2") skip_if_not_installed("dbplyr") library(duckdb, quietly = TRUE) library(dplyr, warn.conflicts = FALSE) test_that("to_duckdb", { ds <- InMemoryDataset$create(example_data) expect_identical( ds %>% to_duckdb() %>% collect() %>% # factors don't roundtrip https://github.com/duckdb/duckdb/issues/1879 select(!fct) %>% arrange(int), example_data %>% select(!fct) %>% arrange(int) ) expect_identical( ds %>% select(int, lgl, dbl) %>% to_duckdb() %>% group_by(lgl) %>% summarise(mean_int = mean(int, na.rm = TRUE), mean_dbl = mean(dbl, na.rm = TRUE)) %>% collect() %>% arrange(mean_int), tibble::tibble( lgl = c(TRUE, NA, FALSE), mean_int = c(3, 6.25, 8.5), mean_dbl = c(3.1, 6.35, 6.1) ) ) # can group_by before the to_duckdb expect_identical( ds %>% select(int, lgl, dbl) %>% group_by(lgl) %>% to_duckdb() %>% summarise(mean_int = mean(int, na.rm = TRUE), mean_dbl = mean(dbl, na.rm = TRUE)) %>% collect() %>% arrange(mean_int), tibble::tibble( lgl = c(TRUE, NA, FALSE), mean_int = c(3, 6.25, 8.5), mean_dbl = c(3.1, 6.35, 6.1) ) ) }) test_that("to_duckdb then to_arrow", { ds <- InMemoryDataset$create(example_data) ds_rt <- ds %>% to_duckdb() %>% # factors don't roundtrip https://github.com/duckdb/duckdb/issues/1879 select(-fct) %>% to_arrow() expect_identical( collect(ds_rt), ds %>% select(-fct) %>% collect() ) # And we can continue the pipeline ds_rt <- ds %>% to_duckdb() %>% # factors don't roundtrip https://github.com/duckdb/duckdb/issues/1879 select(-fct) %>% to_arrow() %>% filter(int > 5) expect_identical( ds_rt %>% collect() %>% arrange(int), ds %>% select(-fct) %>% filter(int > 5) %>% collect() %>% arrange(int) ) # Now check errors ds_rt <- ds %>% to_duckdb() %>% # factors don't roundtrip https://github.com/duckdb/duckdb/issues/1879 select(-fct) # alter the class of ds_rt's connection to simulate some other database class(ds_rt$src$con) <- "some_other_connection" expect_error( to_arrow(ds_rt), "to_arrow\\(\\) currently only supports Arrow tables, Arrow datasets," ) }) test_that("to_arrow roundtrip, with dataset", { # With a multi-part dataset tf <- tempfile() new_ds <- rbind( cbind(example_data, part = 1), cbind(example_data, part = 2), cbind(mutate(example_data, dbl = dbl * 3, dbl2 = dbl2 * 3), part = 3), cbind(mutate(example_data, dbl = dbl * 4, dbl2 = dbl2 * 4), part = 4) ) write_dataset(new_ds, tf, partitioning = "part") ds <- open_dataset(tf) expect_identical( ds %>% to_duckdb() %>% select(-fct) %>% mutate(dbl_plus = dbl + 1) %>% to_arrow() %>% filter(int > 5 & part > 1) %>% collect() %>% arrange(part, int) %>% as.data.frame(), ds %>% select(-fct) %>% filter(int > 5 & part > 1) %>% mutate(dbl_plus = dbl + 1) %>% collect() %>% arrange(part, int) %>% as.data.frame() ) }) test_that("to_arrow roundtrip, with dataset (without wrapping)", { # With a multi-part dataset tf <- tempfile() new_ds <- rbind( cbind(example_data, part = 1), cbind(example_data, part = 2), cbind(mutate(example_data, dbl = dbl * 3, dbl2 = dbl2 * 3), part = 3), cbind(mutate(example_data, dbl = dbl * 4, dbl2 = dbl2 * 4), part = 4) ) write_dataset(new_ds, tf, partitioning = "part") out <- open_dataset(tf) %>% to_duckdb() %>% select(-fct) %>% mutate(dbl_plus = dbl + 1) %>% to_arrow() expect_r6_class(out, "RecordBatchReader") }) # The next set of tests use an already-extant connection to test features of # persistence and querying against the table without using the `tbl` itself, so # we need to create a connection separate from the ephemeral one that is made # with arrow_duck_connection() con <- dbConnect(duckdb::duckdb()) dbExecute(con, "PRAGMA threads=2") on.exit(dbDisconnect(con, shutdown = TRUE), add = TRUE) test_that("Joining, auto-cleanup enabled", { ds <- InMemoryDataset$create(example_data) table_one_name <- "my_arrow_table_1" table_one <- to_duckdb(ds, con = con, table_name = table_one_name) table_two_name <- "my_arrow_table_2" table_two <- to_duckdb(ds, con = con, table_name = table_two_name) res <- dbGetQuery( con, paste0( "SELECT * FROM ", table_one_name, " INNER JOIN ", table_two_name, " ON ", table_one_name, ".int = ", table_two_name, ".int" ) ) expect_identical(dim(res), c(9L, 14L)) # clean up cleans up the tables expect_true(all(c(table_one_name, table_two_name) %in% duckdb::duckdb_list_arrow(con))) rm(table_one, table_two) gc() expect_false(any(c(table_one_name, table_two_name) %in% duckdb::duckdb_list_arrow(con))) }) test_that("Joining, auto-cleanup disabled", { ds <- InMemoryDataset$create(example_data) table_three_name <- "my_arrow_table_3" table_three <- to_duckdb(ds, con = con, table_name = table_three_name, auto_disconnect = FALSE) # clean up does *not* clean these tables expect_true(table_three_name %in% duckdb::duckdb_list_arrow(con)) rm(table_three) gc() # but because we aren't auto_disconnecting then we still have this table. expect_true(table_three_name %in% duckdb::duckdb_list_arrow(con)) }) test_that("to_duckdb with a table", { tab <- Table$create(example_data) expect_identical( tab %>% to_duckdb() %>% group_by(int > 4) %>% summarise( int_mean = mean(int, na.rm = TRUE), dbl_mean = mean(dbl, na.rm = TRUE) ) %>% collect() %>% arrange(int_mean), tibble::tibble( "int > 4" = c(FALSE, TRUE, NA), int_mean = c(2, 7.5, NA), dbl_mean = c(2.1, 7.3, 4.1) ) ) }) test_that("to_duckdb passing a connection", { ds <- InMemoryDataset$create(example_data) con_separate <- dbConnect(duckdb::duckdb()) # we always want to test in parallel dbExecute(con_separate, "PRAGMA threads=2") on.exit(dbDisconnect(con_separate, shutdown = TRUE), add = TRUE) # create a table to join to that we know is in our con_separate new_df <- data.frame( int = 1:10, char = letters[26:17], stringsAsFactors = FALSE ) DBI::dbWriteTable(con_separate, "separate_join_table", new_df) table_four <- ds %>% select(int, lgl, dbl) %>% to_duckdb(con = con_separate, auto_disconnect = FALSE) # dbplyr 2.3.0 renamed this internal attribute to lazy_query; # and 2.4.0 reserved $... for internal use + changed the identifier class if (packageVersion("dbplyr") < "2.4.0") { table_four_name <- unclass(table_four)$lazy_query$x } else { table_four_name <- unclass(unclass(table_four)$lazy_query$x)$table } result <- DBI::dbGetQuery( con_separate, paste0( "SELECT * FROM ", table_four_name, " INNER JOIN separate_join_table ", "ON separate_join_table.int = ", table_four_name, ".int" ) ) expect_identical(dim(result), c(9L, 5L)) expect_identical(result$char, new_df[new_df$int != 4, ]$char) })