# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. test_that("Table cast (ARROW-3741)", { tab <- Table$create(x = 1:10, y = 1:10) expect_error(tab$cast(schema(x = int32()))) expect_error(tab$cast(schema(x = int32(), z = int32()))) s2 <- schema(x = int16(), y = int64()) tab2 <- tab$cast(s2) expect_equal(tab2$schema, s2) expect_equal(tab2$column(0L)$type, int16()) expect_equal(tab2$column(1L)$type, int64()) }) test_that("Table S3 methods", { tab <- Table$create(example_data) for (f in c("dim", "nrow", "ncol", "dimnames", "colnames", "row.names", "as.list")) { fun <- get(f) expect_identical(fun(tab), fun(example_data), info = f) } }) test_that("Table $column and $field", { tab <- Table$create(x = 1:10, y = 1:10) expect_equal(tab$field(0), field("x", int32())) # input validation expect_error(tab$column(NA), "'i' cannot be NA") expect_error(tab$column(-1), "subscript out of bounds") expect_error(tab$column(1000), "subscript out of bounds") expect_error(tab$column(1:2)) expect_error(tab$column("one")) expect_error(tab$field(NA), "'i' cannot be NA") expect_error(tab$field(-1), "subscript out of bounds") expect_error(tab$field(1000), "subscript out of bounds") expect_error(tab$field(1:2)) expect_error(tab$field("one")) }) # Common fixtures used in some of the following tests tbl <- tibble::tibble( int = 1:10, dbl = as.numeric(1:10), lgl = sample(c(TRUE, FALSE, NA), 10, replace = TRUE), chr = letters[1:10], fct = factor(letters[1:10]) ) tab <- Table$create(tbl) test_that("[, [[, $ for Table", { expect_identical(names(tab), names(tbl)) expect_equal_data_frame(tab[6:7, ], tbl[6:7, ]) expect_equal_data_frame(tab[6:7, 2:4], tbl[6:7, 2:4]) expect_equal_data_frame(tab[, c("dbl", "fct")], tbl[, c(2, 5)]) expect_as_vector(tab[, "chr", drop = TRUE], tbl$chr) # Take within a single chunk expect_equal_data_frame(tab[c(7, 3, 5), 2:4], tbl[c(7, 3, 5), 2:4]) expect_equal_data_frame(tab[rep(c(FALSE, TRUE), 5), ], tbl[c(2, 4, 6, 8, 10), ]) # bool ChunkedArray (with one chunk) expect_equal_data_frame(tab[tab$lgl, ], tbl[tbl$lgl, ]) # ChunkedArray with multiple chunks c1 <- c(TRUE, FALSE, TRUE, TRUE, FALSE) c2 <- c(FALSE, FALSE, TRUE, TRUE, FALSE) ca <- ChunkedArray$create(c1, c2) expect_equal_data_frame(tab[ca, ], tbl[c(1, 3, 4, 8, 9), ]) # int Array expect_equal_data_frame(tab[Array$create(5:6), 2:4], tbl[6:7, 2:4]) # ChunkedArray expect_equal_data_frame(tab[ChunkedArray$create(5L, 6L), 2:4], tbl[6:7, 2:4]) # Expression expect_equal_data_frame(tab[tab$int > 6, ], tbl[tbl$int > 6, ]) expect_as_vector(tab[["int"]], tbl$int) expect_as_vector(tab$int, tbl$int) expect_as_vector(tab[[4]], tbl$chr) expect_null(tab$qwerty) expect_null(tab[["asdf"]]) # List-like column slicing expect_equal_data_frame(tab[2:4], tbl[2:4]) expect_equal_data_frame(tab[c(2, 1)], tbl[c(2, 1)]) expect_equal_data_frame(tab[-3], tbl[-3]) expect_error(tab[[c(4, 3)]]) expect_error(tab[[NA]], "'i' must be character or numeric, not logical") expect_error(tab[[NULL]], "'i' must be character or numeric, not NULL") expect_error(tab[[c("asdf", "jkl;")]], "length(name) not equal to 1", fixed = TRUE) expect_error(tab[-3:3], "Invalid column index") expect_error(tab[1000], "Invalid column index") expect_error(tab[1:1000], "Invalid column index") # input validation expect_error(tab[, c("dbl", "NOTACOLUMN")], 'Column not found: "NOTACOLUMN"') expect_error(tab[, c(6, NA)], "Column indices cannot be NA") skip("Table with 0 cols doesn't know how many rows it should have") expect_equal_data_frame(tab[0], tbl[0]) }) test_that("[[<- assignment", { # can remove a column tab[["chr"]] <- NULL expect_equal_data_frame(tab, tbl[-4]) # can remove a column by index tab[[4]] <- NULL expect_equal_data_frame(tab, tbl[1:3]) # can add a named column tab[["new"]] <- letters[10:1] expect_equal_data_frame(tab, dplyr::bind_cols(tbl[1:3], new = letters[10:1])) # can replace a column by index tab[[2]] <- as.numeric(10:1) expect_as_vector(tab[[2]], as.numeric(10:1)) # can add a column by index tab[[5]] <- as.numeric(10:1) expect_as_vector(tab[[5]], as.numeric(10:1)) expect_as_vector(tab[["5"]], as.numeric(10:1)) # can replace a column tab[["int"]] <- 10:1 expect_as_vector(tab[["int"]], 10:1) # can use $ tab$new <- NULL expect_null(as.vector(tab$new)) expect_identical(dim(tab), c(10L, 4L)) tab$int <- 1:10 expect_as_vector(tab$int, 1:10) # recycling tab[["atom"]] <- 1L expect_as_vector(tab[["atom"]], rep(1L, 10)) expect_error( tab[["atom"]] <- 1:6, "Can't recycle input of size 6 to size 10." ) # assign Arrow array and chunked_array array <- Array$create(c(10:1)) tab$array <- array expect_as_vector(tab$array, 10:1) tab$chunked <- chunked_array(1:10) expect_as_vector(tab$chunked, 1:10) # nonsense indexes expect_error(tab[[NA]] <- letters[10:1], "'i' must be character or numeric, not logical") expect_error(tab[[NULL]] <- letters[10:1], "'i' must be character or numeric, not NULL") expect_error(tab[[NA_integer_]] <- letters[10:1], "!is.na(i) is not TRUE", fixed = TRUE) expect_error(tab[[NA_real_]] <- letters[10:1], "!is.na(i) is not TRUE", fixed = TRUE) expect_error(tab[[NA_character_]] <- letters[10:1], "!is.na(i) is not TRUE", fixed = TRUE) expect_error(tab[[c(1, 4)]] <- letters[10:1], "length(i) not equal to 1", fixed = TRUE) }) test_that("Table$Slice", { tab2 <- tab$Slice(5) expect_equal_data_frame(tab2, tbl[6:10, ]) tab3 <- tab$Slice(5, 2) expect_equal_data_frame(tab3, tbl[6:7, ]) # Input validation expect_error(tab$Slice("ten")) expect_error(tab$Slice(NA_integer_), "Slice 'offset' cannot be NA") expect_error(tab$Slice(NA), "Slice 'offset' cannot be NA") expect_error(tab$Slice(10, "ten")) expect_error(tab$Slice(10, NA_integer_), "Slice 'length' cannot be NA") expect_error(tab$Slice(NA_integer_, NA_integer_), "Slice 'offset' cannot be NA") expect_error(tab$Slice(c(10, 10))) expect_error(tab$Slice(10, c(10, 10))) expect_error(tab$Slice(1000), "Slice 'offset' greater than array length") expect_error(tab$Slice(-1), "Slice 'offset' cannot be negative") expect_error(tab3$Slice(10, 10), "Slice 'offset' greater than array length") expect_error(tab$Slice(10, -1), "Slice 'length' cannot be negative") expect_error(tab$Slice(-1, 10), "Slice 'offset' cannot be negative") }) test_that("head and tail on Table", { expect_equal_data_frame(head(tab), head(tbl)) expect_equal_data_frame(head(tab, 4), head(tbl, 4)) expect_equal_data_frame(head(tab, 40), head(tbl, 40)) expect_equal_data_frame(head(tab, -4), head(tbl, -4)) expect_equal_data_frame(head(tab, -40), head(tbl, -40)) expect_equal_data_frame(tail(tab), tail(tbl)) expect_equal_data_frame(tail(tab, 4), tail(tbl, 4)) expect_equal_data_frame(tail(tab, 40), tail(tbl, 40)) expect_equal_data_frame(tail(tab, -4), tail(tbl, -4)) expect_equal_data_frame(tail(tab, -40), tail(tbl, -40)) }) test_that("Table print method", { expect_output( print(tab), paste( "Table", "10 rows x 5 columns", "$int ", "$dbl ", "$lgl ", "$chr ", "$fct >", sep = "\n" ), fixed = TRUE ) }) test_that("table active bindings", { expect_identical(dim(tbl), dim(tab)) expect_type(tab$columns, "list") expect_equal(tab$columns[[1]], tab[[1]]) }) test_that("table() handles record batches with splicing", { batch <- record_batch(x = 1:2, y = letters[1:2]) tab <- Table$create(batch, batch, batch) expect_equal(tab$schema, batch$schema) expect_equal(tab$num_rows, 6L) expect_equal( as.data.frame(tab), vctrs::vec_rbind(as.data.frame(batch), as.data.frame(batch), as.data.frame(batch)) ) batches <- list(batch, batch, batch) tab <- Table$create(!!!batches) expect_equal(tab$schema, batch$schema) expect_equal(tab$num_rows, 6L) expect_equal( as.data.frame(tab), vctrs::vec_rbind(!!!purrr::map(batches, as.data.frame)) ) }) test_that("table() handles ... of arrays, chunked arrays, vectors", { a <- Array$create(1:10) ca <- chunked_array(1:5, 6:10) v <- rnorm(10) tbl <- tibble::tibble(x = 1:10, y = letters[1:10]) tab <- Table$create(a = a, b = ca, c = v, !!!tbl) expect_equal( tab$schema, schema(a = int32(), b = int32(), c = float64(), x = int32(), y = utf8()) ) expect_equal_data_frame( tab, tibble::tibble(a = 1:10, b = 1:10, c = v, x = 1:10, y = letters[1:10]) ) }) test_that("table() auto splices (ARROW-5718)", { df <- tibble::tibble(x = 1:10, y = letters[1:10]) tab1 <- Table$create(df) tab2 <- Table$create(!!!df) expect_equal(tab1, tab2) expect_equal(tab1$schema, schema(x = int32(), y = utf8())) expect_equal_data_frame(tab1, df) s <- schema(x = float64(), y = utf8()) tab3 <- Table$create(df, schema = s) tab4 <- Table$create(!!!df, schema = s) expect_equal(tab3, tab4) expect_equal(tab3$schema, s) expect_equal_data_frame(tab3, df) }) test_that("Validation when creating table with schema (ARROW-10953)", { expect_error( Table$create(data.frame(), schema = schema(a = int32())), "incompatible. schema has 1 fields, and 0 columns are supplied", fixed = TRUE ) expect_error( Table$create(data.frame(b = 1), schema = schema(a = int32())), "field at index 1 has name 'a' != 'b'", fixed = TRUE ) expect_error( Table$create(data.frame(b = 2, c = 3), schema = schema(a = int32())), "incompatible. schema has 1 fields, and 2 columns are supplied", fixed = TRUE ) }) test_that("==.Table", { tab1 <- Table$create(x = 1:2, y = c("a", "b")) tab2 <- Table$create(x = 1:2, y = c("a", "b")) tab3 <- Table$create(x = 1:2) tab4 <- Table$create(x = 1:2, y = c("a", "b"), z = 3:4) expect_true(tab1 == tab2) expect_true(tab2 == tab1) expect_false(tab1 == tab3) expect_false(tab3 == tab1) expect_false(tab1 == tab4) expect_false(tab4 == tab1) expect_true(all.equal(tab1, tab2)) expect_equal(tab1, tab2) }) test_that("Table$Equals(check_metadata)", { tab1 <- Table$create(x = 1:2, y = c("a", "b")) tab2 <- Table$create( x = 1:2, y = c("a", "b"), schema = tab1$schema$WithMetadata(list(some = "metadata")) ) expect_r6_class(tab1, "Table") expect_r6_class(tab2, "Table") expect_false(tab1$schema$HasMetadata) expect_true(tab2$schema$HasMetadata) expect_identical(tab2$schema$metadata, list(some = "metadata")) expect_true(tab1 == tab2) expect_true(tab1$Equals(tab2)) expect_false(tab1$Equals(tab2, check_metadata = TRUE)) expect_failure(expect_equal(tab1, tab2)) # expect_equal has check_metadata=TRUE expect_equal(tab1, tab2, ignore_attr = TRUE) # this sets check_metadata=FALSE expect_false(tab1$Equals(24)) # Not a Table }) test_that("Table handles null type (ARROW-7064)", { tab <- Table$create(a = 1:10, n = vctrs::unspecified(10)) expect_equal(tab$schema, schema(a = int32(), n = null()), ignore_attr = TRUE) }) test_that("Can create table with specific dictionary types", { fact <- example_data[, "fct"] int_types <- c(int8(), int16(), int32(), int64()) # TODO: test uint types when format allows # uint_types <- c(uint8(), uint16(), uint32(), uint64()) # nolint for (i in int_types) { sch <- schema(fct = dictionary(i, utf8())) tab <- Table$create(fact, schema = sch) expect_equal(sch, tab$schema) if (i != int64()) { # TODO: same downcast to int32 as we do for int64() type elsewhere expect_equal_data_frame(tab, fact) } } }) test_that("Table unifies dictionary on conversion back to R (ARROW-8374)", { b1 <- record_batch(f = factor(c("a"), levels = c("a", "b"))) b2 <- record_batch(f = factor(c("c"), levels = c("c", "d"))) b3 <- record_batch(f = factor(NA, levels = "a")) b4 <- record_batch(f = factor()) res <- tibble::tibble(f = factor(c("a", "c", NA), levels = c("a", "b", "c", "d"))) tab <- Table$create(b1, b2, b3, b4) expect_equal_data_frame(tab, res) }) test_that("Table$SelectColumns()", { tab <- Table$create(x = 1:10, y = 1:10) expect_equal(tab$SelectColumns(0L), Table$create(x = 1:10)) expect_error(tab$SelectColumns(2:4)) expect_error(tab$SelectColumns("")) }) test_that("Table name assignment", { tab <- Table$create(x = 1:10, y = 1:10) expect_identical(names(tab), c("x", "y")) names(tab) <- c("a", "b") expect_identical(names(tab), c("a", "b")) expect_error(names(tab) <- "f") expect_error(names(tab) <- letters) expect_error(names(tab) <- character(0)) expect_error(names(tab) <- NULL) expect_error(names(tab) <- c(TRUE, FALSE)) }) test_that("Table$create() with different length columns", { msg <- "All columns must have the same length" expect_error(Table$create(a = 1:5, b = 1:6), msg) }) test_that("Table$create() scalar recycling with vectors", { expect_equal_data_frame( Table$create(a = 1:10, b = 5), tibble::tibble(a = 1:10, b = 5) ) }) test_that("Table$create() scalar recycling with Scalars, Arrays, and ChunkedArrays", { expect_equal_data_frame( Table$create(a = Array$create(1:10), b = Scalar$create(5)), tibble::tibble(a = 1:10, b = 5) ) expect_equal_data_frame( Table$create(a = Array$create(1:10), b = Array$create(5)), tibble::tibble(a = 1:10, b = 5) ) expect_equal_data_frame( Table$create(a = Array$create(1:10), b = ChunkedArray$create(5)), tibble::tibble(a = 1:10, b = 5) ) }) test_that("Table$create() no recycling with tibbles", { expect_error( Table$create( tibble::tibble(a = 1:10, b = 5), tibble::tibble(a = 1, b = 5) ), regexp = "All input tibbles or data.frames must have the same number of rows" ) expect_error( Table$create( tibble::tibble(a = 1:10, b = 5), tibble::tibble(a = 1) ), regexp = "All input tibbles or data.frames must have the same number of rows" ) }) test_that("Tables can be combined with concat_tables()", { expect_error( concat_tables(arrow_table(a = 1:10), arrow_table(a = c("a", "b")), unify_schemas = FALSE), regexp = "Schema at index 2 does not match the first schema" ) expect_error( concat_tables(arrow_table(a = 1:10), arrow_table(a = c("a", "b")), unify_schemas = TRUE), regexp = "Unable to merge: Field a has incompatible types: int32 vs string" ) expect_error( concat_tables(), regexp = "Must pass at least one Table" ) expect_equal( concat_tables( arrow_table(a = 1:5), arrow_table(a = 6:7, b = c("d", "e")) ), arrow_table(a = 1:7, b = c(rep(NA, 5), "d", "e")) ) # concat_tables() with one argument returns identical table expected <- arrow_table(a = 1:10) expect_equal(expected, concat_tables(expected)) }) test_that("Table supports rbind", { expect_error( rbind(arrow_table(a = 1:10), arrow_table(a = c("a", "b"))), regexp = "Schema at index 2 does not match the first schema" ) tables <- list( arrow_table(a = 1:10, b = Scalar$create("x")), arrow_table(a = 2:42, b = Scalar$create("y")), arrow_table(a = 8:10, b = Scalar$create("z")) ) expected <- Table$create(do.call(rbind, lapply(tables, as.data.frame))) actual <- do.call(rbind, tables) expect_equal(actual, expected, ignore_attr = TRUE) # rbind with empty table produces identical table expected <- arrow_table(a = 1:10, b = Scalar$create("x")) expect_equal( rbind(expected, arrow_table(a = integer(0), b = character(0))), expected ) # rbind() with one argument returns identical table expect_equal(rbind(expected), expected) }) test_that("Table supports cbind", { expect_snapshot_error( cbind( arrow_table(a = 1:10), arrow_table(a = c("a", "b")) ) ) expect_error( cbind(arrow_table(a = 1:10), arrow_table(b = character(0))), regexp = "Non-scalar inputs must have an equal number of rows" ) actual <- cbind( arrow_table(a = 1:10, b = Scalar$create("x")), arrow_table(a = 11:20, b = Scalar$create("y")), arrow_table(c = 1:10) ) expected <- arrow_table(cbind( tibble::tibble(a = 1:10, b = "x"), tibble::tibble(a = 11:20, b = "y"), tibble::tibble(c = 1:10) )) expect_equal(actual, expected, ignore_attr = TRUE) # cbind() with one argument returns identical table expected <- arrow_table(a = 1:10) expect_equal(expected, cbind(expected)) # Handles Arrow arrays and chunked arrays expect_equal( cbind(arrow_table(a = 1:2), b = Array$create(4:5)), arrow_table(a = 1:2, b = 4:5) ) expect_equal( cbind(arrow_table(a = 1:2), b = chunked_array(4, 5)), arrow_table(a = 1:2, b = chunked_array(4, 5)) ) # Handles data.frame if (getRversion() >= "4.0.0") { # Prior to R 4.0, cbind would short-circuit to the data.frame implementation # if **any** of the arguments are a data.frame. expect_equal( cbind(arrow_table(a = 1:2), data.frame(b = 4:5)), arrow_table(a = 1:2, b = 4:5) ) } # Handles factors expect_equal( cbind(arrow_table(a = 1:2), b = factor(c("a", "b"))), arrow_table(a = 1:2, b = factor(c("a", "b"))) ) # Handles scalar values expect_equal( cbind(arrow_table(a = 1:2), b = "x"), arrow_table(a = 1:2, b = c("x", "x")) ) # Handles zero rows expect_equal( cbind(arrow_table(a = character(0)), b = Array$create(numeric(0)), c = integer(0)), arrow_table(a = character(0), b = numeric(0), c = integer(0)), ) # Rejects unnamed arrays, even in cases where no named arguments are passed expect_error( cbind(arrow_table(a = 1:2), b = 3:4, 5:6), regexp = "Vector and array arguments must have names" ) expect_error( cbind(arrow_table(a = 1:2), 3:4, 5:6), regexp = "Vector and array arguments must have names" ) }) test_that("cbind.Table handles record batches and tables", { # R 3.6 cbind dispatch rules cause cbind to fall back to default impl if # there are multiple arguments with distinct cbind implementations skip_if(getRversion() < "4.0.0", "R 3.6 cbind dispatch rules prevent this behavior") expect_equal( cbind(arrow_table(a = 1L:2L), record_batch(b = 4:5)), arrow_table(a = 1L:2L, b = 4:5) ) }) test_that("ARROW-11769/ARROW-17085 - grouping preserved in table creation", { skip_if_not_available("dataset") tbl <- tibble::tibble( int = 1:10, fct = factor(rep(c("A", "B"), 5)), fct2 = factor(rep(c("C", "D"), each = 5)), ) expect_identical( tbl %>% Table$create() %>% dplyr::group_vars(), dplyr::group_vars(tbl) ) expect_identical( tbl %>% dplyr::group_by(fct, fct2) %>% Table$create() %>% dplyr::group_vars(), c("fct", "fct2") ) }) test_that("ARROW-12729 - length returns number of columns in Table", { tbl <- tibble::tibble( int = 1:10, fct = factor(rep(c("A", "B"), 5)), fct2 = factor(rep(c("C", "D"), each = 5)), ) tab <- Table$create(!!!tbl) expect_identical(length(tab), 3L) }) test_that("as_arrow_table() works for Table", { table <- arrow_table(col1 = 1L, col2 = "two") expect_identical(as_arrow_table(table), table) expect_equal( as_arrow_table(table, schema = schema(col1 = float64(), col2 = string())), arrow_table(col1 = Array$create(1, type = float64()), col2 = "two") ) }) test_that("as_arrow_table() works for RecordBatch", { table <- arrow_table(col1 = 1L, col2 = "two") batch <- record_batch(col1 = 1L, col2 = "two") expect_equal(as_arrow_table(batch), table) expect_equal( as_arrow_table(batch, schema = schema(col1 = float64(), col2 = string())), arrow_table(col1 = Array$create(1, type = float64()), col2 = "two") ) }) test_that("as_arrow_table() works for data.frame()", { table <- arrow_table(col1 = 1L, col2 = "two") tbl <- tibble::tibble(col1 = 1L, col2 = "two") expect_equal(as_arrow_table(tbl), table) expect_equal( as_arrow_table( tbl, schema = schema(col1 = float64(), col2 = string()) ), arrow_table(col1 = Array$create(1, type = float64()), col2 = "two") ) }) test_that("as_arrow_table() errors for invalid input", { expect_error( as_arrow_table("no as_arrow_table() method"), class = "arrow_no_method_as_arrow_table" ) }) test_that("num_rows method not susceptible to integer overflow", { skip_if_not_running_large_memory_tests() small_array <- Array$create(raw(1)) big_array <- Array$create(raw(.Machine$integer.max)) big_chunked_array <- chunked_array(big_array, small_array) # LargeString array with data buffer > MAX_INT32 big_string_array <- Array$create(make_big_string()) small_table <- Table$create(col = small_array) big_table <- Table$create(col = big_chunked_array) expect_type(big_array$nbytes(), "integer") expect_type(big_chunked_array$nbytes(), "double") expect_type(length(big_array), "integer") expect_type(length(big_chunked_array), "double") expect_type(small_table$num_rows, "integer") expect_type(big_table$num_rows, "double") expect_identical(big_string_array$data()$buffers[[3]]$size, 2148007936) }) test_that("can create empty table from schema", { schema <- schema( col1 = float64(), col2 = string(), col3 = vctrs_extension_type(integer()) ) out <- Table$create(schema = schema) expect_r6_class(out, "Table") expect_equal(nrow(out), 0) expect_equal(out$schema, schema) }) test_that("as_arrow_table() errors on data.frame with NULL names", { df <- data.frame(a = 1, b = "two") names(df) <- NULL expect_error(as_arrow_table(df), "Input data frame columns must be named") }) test_that("# GH-35038 - passing in multiple arguments doesn't affect return type", { df <- data.frame(x = 1) out1 <- as.data.frame(arrow_table(df, name = "1")) out2 <- as.data.frame(arrow_table(name = "1", df)) expect_s3_class(out1, c("data.frame"), exact = TRUE) expect_s3_class(out2, c("data.frame"), exact = TRUE) }) test_that("as.data.frame() on ArrowTabular objects returns a base R data.frame regardless of input type", { df <- data.frame(x = 1) out1 <- as.data.frame(arrow_table(df)) expect_s3_class(out1, "data.frame", exact = TRUE) tib <- tibble::tibble(x = 1) out2 <- as.data.frame(arrow_table(tib)) expect_s3_class(out2, "data.frame", exact = TRUE) }) test_that("collect() on ArrowTabular objects returns a tibble regardless of input type", { df <- data.frame(x = 1) out1 <- dplyr::collect(arrow_table(df)) expect_s3_class(out1, c("tbl_df", "tbl", "data.frame"), exact = TRUE) tib <- tibble::tibble(x = 1) out2 <- dplyr::collect(arrow_table(tib)) expect_s3_class(out2, c("tbl_df", "tbl", "data.frame"), exact = TRUE) })