# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. test_that("list_compute_functions", { allfuncs <- list_compute_functions() expect_false(all(grepl("min", allfuncs))) justmins <- list_compute_functions("^min") expect_true(length(justmins) > 0) expect_true(all(grepl("min", justmins))) no_hash_funcs <- list_compute_functions("^hash") expect_true(length(no_hash_funcs) == 0) }) test_that("sum.Array", { ints <- 1:5 a <- Array$create(ints) expect_r6_class(sum(a), "Scalar") expect_identical(as.integer(sum(a)), sum(ints)) floats <- c(1.3, 2.4, 3) f <- Array$create(floats) expect_identical(as.numeric(sum(f)), sum(floats)) floats <- c(floats, NA) na <- Array$create(floats) if (!grepl("devel", R.version.string)) { # Valgrind on R-devel confuses NaN and NA_real_ # https://r.789695.n4.nabble.com/Difference-in-NA-behavior-in-R-devel-running-under-valgrind-td4768731.html expect_identical(as.numeric(sum(na)), sum(floats)) } expect_r6_class(sum(na, na.rm = TRUE), "Scalar") expect_identical(as.numeric(sum(na, na.rm = TRUE)), sum(floats, na.rm = TRUE)) bools <- c(TRUE, NA, TRUE, FALSE) b <- Array$create(bools) expect_identical(as.integer(sum(b)), sum(bools)) expect_identical(as.integer(sum(b, na.rm = TRUE)), sum(bools, na.rm = TRUE)) }) test_that("sum.ChunkedArray", { a <- ChunkedArray$create(1:4, c(1:4, NA), 1:5) expect_r6_class(sum(a), "Scalar") expect_true(is.na(as.vector(sum(a)))) expect_identical(as.numeric(sum(a, na.rm = TRUE)), 35) }) test_that("sum dots", { a1 <- Array$create(1:4) a2 <- ChunkedArray$create(1:4, c(1:4, NA), 1:5) expect_identical(as.numeric(sum(a1, a2, na.rm = TRUE)), 45) }) test_that("sum.Scalar", { s <- Scalar$create(4) expect_identical(as.numeric(s), as.numeric(sum(s))) }) test_that("mean.Array", { ints <- 1:4 a <- Array$create(ints) expect_r6_class(mean(a), "Scalar") expect_identical(as.vector(mean(a)), mean(ints)) floats <- c(1.3, 2.4, 3) f <- Array$create(floats) expect_identical(as.vector(mean(f)), mean(floats)) floats <- c(floats, NA) na <- Array$create(floats) if (!grepl("devel", R.version.string)) { # Valgrind on R-devel confuses NaN and NA_real_ # https://r.789695.n4.nabble.com/Difference-in-NA-behavior-in-R-devel-running-under-valgrind-td4768731.html expect_identical(as.vector(mean(na)), mean(floats)) } expect_r6_class(mean(na, na.rm = TRUE), "Scalar") expect_identical(as.vector(mean(na, na.rm = TRUE)), mean(floats, na.rm = TRUE)) bools <- c(TRUE, NA, TRUE, FALSE) b <- Array$create(bools) expect_identical(as.vector(mean(b)), mean(bools)) expect_identical(as.integer(sum(b, na.rm = TRUE)), sum(bools, na.rm = TRUE)) }) test_that("mean.ChunkedArray", { a <- ChunkedArray$create(1:4, c(1:4, NA), 1:5) expect_r6_class(mean(a), "Scalar") expect_true(is.na(as.vector(mean(a)))) expect_identical(as.vector(mean(a, na.rm = TRUE)), 35 / 13) }) test_that("mean.Scalar", { s <- Scalar$create(4) expect_equal(s, mean(s)) }) test_that("Bad input handling of call_function", { expect_error( call_function("sum", 2, 3), 'Argument 1 is of class numeric but it must be one of "Array", "ChunkedArray", "RecordBatch", "Table", or "Scalar"' ) }) test_that("min.Array", { ints <- 1:4 a <- Array$create(ints) expect_r6_class(min(a), "Scalar") expect_identical(as.vector(min(a)), min(ints)) floats <- c(1.3, 3, 2.4) f <- Array$create(floats) expect_identical(as.vector(min(f)), min(floats)) floats <- c(floats, NA) na <- Array$create(floats) expect_identical(as.vector(min(na)), min(floats)) expect_r6_class(min(na, na.rm = TRUE), "Scalar") expect_identical(as.vector(min(na, na.rm = TRUE)), min(floats, na.rm = TRUE)) bools <- c(TRUE, TRUE, FALSE) b <- Array$create(bools) # R is inconsistent here: typeof(min(NA)) == "integer", not "logical" expect_identical(as.vector(min(b)), as.logical(min(bools))) }) test_that("max.Array", { ints <- 1:4 a <- Array$create(ints) expect_r6_class(max(a), "Scalar") expect_identical(as.vector(max(a)), max(ints)) floats <- c(1.3, 3, 2.4) f <- Array$create(floats) expect_identical(as.vector(max(f)), max(floats)) floats <- c(floats, NA) na <- Array$create(floats) expect_identical(as.vector(max(na)), max(floats)) expect_r6_class(max(na, na.rm = TRUE), "Scalar") expect_identical(as.vector(max(na, na.rm = TRUE)), max(floats, na.rm = TRUE)) bools <- c(TRUE, TRUE, FALSE) b <- Array$create(bools) # R is inconsistent here: typeof(max(NA)) == "integer", not "logical" expect_identical(as.vector(max(b)), as.logical(max(bools))) }) test_that("min.ChunkedArray", { ints <- 1:4 a <- ChunkedArray$create(ints) expect_r6_class(min(a), "Scalar") expect_identical(as.vector(min(a)), min(ints)) floats <- c(1.3, 3, 2.4) f <- ChunkedArray$create(floats) expect_identical(as.vector(min(f)), min(floats)) floats <- c(floats, NA) na <- ChunkedArray$create(floats) expect_identical(as.vector(min(na)), min(floats)) expect_r6_class(min(na, na.rm = TRUE), "Scalar") expect_identical(as.vector(min(na, na.rm = TRUE)), min(floats, na.rm = TRUE)) bools <- c(TRUE, TRUE, FALSE) b <- ChunkedArray$create(bools) # R is inconsistent here: typeof(min(NA)) == "integer", not "logical" expect_identical(as.vector(min(b)), as.logical(min(bools))) }) test_that("max.ChunkedArray", { ints <- 1:4 a <- ChunkedArray$create(ints) expect_r6_class(max(a), "Scalar") expect_identical(as.vector(max(a)), max(ints)) floats <- c(1.3, 3, 2.4) f <- ChunkedArray$create(floats) expect_identical(as.vector(max(f)), max(floats)) floats <- c(floats, NA) na <- ChunkedArray$create(floats) expect_identical(as.vector(max(na)), max(floats)) expect_r6_class(max(na, na.rm = TRUE), "Scalar") expect_identical(as.vector(max(na, na.rm = TRUE)), max(floats, na.rm = TRUE)) bools <- c(TRUE, TRUE, FALSE) b <- ChunkedArray$create(bools) # R is inconsistent here: typeof(max(NA)) == "integer", not "logical" expect_identical(as.vector(max(b)), as.logical(max(bools))) }) test_that("Edge cases", { a <- Array$create(NA) for (type in c(int32(), float64(), bool())) { expect_as_vector(sum(a$cast(type), na.rm = TRUE), sum(NA, na.rm = TRUE)) expect_as_vector(mean(a$cast(type), na.rm = TRUE), mean(NA, na.rm = TRUE)) expect_as_vector( min(a$cast(type), na.rm = TRUE), # Suppress the base R warning about no non-missing arguments suppressWarnings(min(NA, na.rm = TRUE)) ) expect_as_vector( max(a$cast(type), na.rm = TRUE), suppressWarnings(max(NA, na.rm = TRUE)) ) } }) test_that("quantile.Array and quantile.ChunkedArray", { a <- Array$create(c(0, 1, 2, 3)) ca <- ChunkedArray$create(c(0, 1), c(2, 3)) probs <- c(0.49, 0.51) for (ad in list(a, ca)) { for (type in c(int32(), uint64(), float64())) { expect_equal( quantile(ad$cast(type), probs = probs, interpolation = "linear"), Array$create(c(1.47, 1.53)) ) expect_equal( quantile(ad$cast(type), probs = probs, interpolation = "lower"), Array$create(c(1, 1))$cast(type) ) expect_equal( quantile(ad$cast(type), probs = probs, interpolation = "higher"), Array$create(c(2, 2))$cast(type) ) expect_equal( quantile(ad$cast(type), probs = probs, interpolation = "nearest"), Array$create(c(1, 2))$cast(type) ) expect_equal( quantile(ad$cast(type), probs = probs, interpolation = "midpoint"), Array$create(c(1.5, 1.5)) ) } } }) test_that("quantile and median NAs, edge cases, and exceptions", { expect_equal( quantile(Array$create(c(1, 2)), probs = c(0, 1)), Array$create(c(1, 2)) ) expect_error( quantile(Array$create(c(1, 2, NA))), "Missing values not allowed if 'na.rm' is FALSE" ) expect_equal( quantile(Array$create(numeric(0))), Array$create(rep(NA_real_, 5)) ) expect_equal( quantile(Array$create(rep(NA_integer_, 3)), na.rm = TRUE), Array$create(rep(NA_real_, 5)) ) expect_equal( quantile(Scalar$create(0L)), Array$create(rep(0, 5)) ) expect_equal( median(Scalar$create(1L)), Scalar$create(1) ) expect_error( quantile(Array$create(1:3), type = 9), "not supported" ) }) test_that("median passes ... args to quantile", { expect_equal( median(Array$create(c(1, 2)), interpolation = "higher"), Scalar$create(2) ) expect_error( median(Array$create(c(1, 2)), probs = c(.25, .75)) ) }) test_that("median.Array and median.ChunkedArray", { compare_expression( median(.input), 1:4 ) compare_expression( median(.input), 1:5 ) compare_expression( median(.input), numeric(0) ) compare_expression( median(.input, na.rm = FALSE), c(1, 2, NA) ) compare_expression( median(.input, na.rm = TRUE), c(1, 2, NA) ) compare_expression( median(.input, na.rm = TRUE), NA_real_ ) compare_expression( median(.input, na.rm = FALSE), c(1, 2, NA) ) compare_expression( median(.input, na.rm = TRUE), c(1, 2, NA) ) compare_expression( median(.input, na.rm = TRUE), NA_real_ ) }) test_that("unique.Array", { a <- Array$create(c(1, 4, 3, 1, 1, 3, 4)) expect_equal(unique(a), Array$create(c(1, 4, 3))) ca <- ChunkedArray$create(a, a) expect_equal(unique(ca), Array$create(c(1, 4, 3))) }) test_that("match_arrow", { a <- Array$create(c(1, 4, 3, 1, 1, 3, 4)) tab <- c(4, 3, 2, 1) expect_equal(match_arrow(a, tab), Array$create(c(3L, 0L, 1L, 3L, 3L, 1L, 0L))) ca <- ChunkedArray$create(c(1, 4, 3, 1, 1, 3, 4)) expect_equal(match_arrow(ca, tab), ChunkedArray$create(c(3L, 0L, 1L, 3L, 3L, 1L, 0L))) sc <- Scalar$create(3) expect_equal(match_arrow(sc, tab), Scalar$create(1L)) vec <- c(1, 2) expect_equal(match_arrow(vec, tab), Array$create(c(3L, 2L))) }) test_that("is_in", { a <- Array$create(c(9, 4, 3)) tab <- c(4, 3, 2, 1) expect_equal(is_in(a, tab), Array$create(c(FALSE, TRUE, TRUE))) ca <- ChunkedArray$create(c(9, 4, 3)) expect_equal(is_in(ca, tab), ChunkedArray$create(c(FALSE, TRUE, TRUE))) sc <- Scalar$create(3) expect_equal(is_in(sc, tab), Scalar$create(TRUE)) vec <- c(1, 9) expect_equal(is_in(vec, tab), Array$create(c(TRUE, FALSE))) }) test_that("value_counts", { a <- Array$create(c(1, 4, 3, 1, 1, 3, 4)) result_df <- tibble::tibble( values = c(1, 4, 3), counts = c(3L, 2L, 2L) ) result <- Array$create( result_df, type = struct(values = float64(), counts = int64()) ) expect_equal(value_counts(a), result) expect_equal_data_frame(value_counts(a), result_df) expect_identical(as.vector(value_counts(a)$counts), result_df$counts) }) test_that("any.Array and any.ChunkedArray", { data <- c(1:10, NA, NA) compare_expression(any(.input > 5), data) compare_expression(any(.input > 5, na.rm = TRUE), data) compare_expression(any(.input < 1), data) compare_expression(any(.input < 1, na.rm = TRUE), data) data_logical <- c(TRUE, FALSE, TRUE, NA, FALSE) compare_expression(any(.input), data_logical) compare_expression(any(.input, na.rm = FALSE), data_logical) compare_expression(any(.input, na.rm = TRUE), data_logical) }) test_that("all.Array and all.ChunkedArray", { data <- c(1:10, NA, NA) compare_expression(all(.input > 5), data) compare_expression(all(.input > 5, na.rm = TRUE), data) compare_expression(all(.input < 11), data) compare_expression(all(.input < 11, na.rm = TRUE), data) data_logical <- c(TRUE, TRUE, NA) compare_expression(all(.input), data_logical) compare_expression(all(.input, na.rm = TRUE), data_logical) }) test_that("variance", { data <- c(-37, 267, 88, -120, 9, 101, -65, -23, NA) arr <- Array$create(data) chunked_arr <- ChunkedArray$create(data) expect_equal(call_function("variance", arr, options = list(ddof = 5)), Scalar$create(34596)) expect_equal(call_function("variance", chunked_arr, options = list(ddof = 5)), Scalar$create(34596)) }) test_that("stddev", { data <- c(-37, 267, 88, -120, 9, 101, -65, -23, NA) arr <- Array$create(data) chunked_arr <- ChunkedArray$create(data) expect_equal(call_function("stddev", arr, options = list(ddof = 5)), Scalar$create(186)) expect_equal(call_function("stddev", chunked_arr, options = list(ddof = 5)), Scalar$create(186)) })