set.seed(329) #' @srrstats {G5.0} *use pbc/flchain data, standards for survival analysis* library(survival) # flchain ---- data("flchain", package = 'survival') flc <- flchain flc$chapter <- NULL flc <- na.omit(flc) flc <- flc[flc$futime > 0, ] names(flc)[names(flc) == 'futime'] <- 'time' names(flc)[names(flc) == 'death'] <- 'status' # make sorted x and y matrices for testing internal cpp functions flc_mats <- prep_test_matrices(flc, outcomes = c("time", "status")) # lung ---- lcd <- survival::lung lcd$inst <- NULL lcd <- na.omit(lcd) # make sorted x and y matrices for testing internal cpp functions lcd_mats <- prep_test_matrices(lcd, outcomes = c("time", "status")) # pbc ---- pbc <- pbc_orsf pbc$id <- NULL pbc_status_12 <- pbc pbc_status_12$status <- pbc_status_12$status + 1 pbc_scale <- pbc_noise <- pbc vars <- c('bili', 'chol', 'albumin', 'copper', 'alk.phos', 'ast') for(i in vars){ pbc_noise[[i]] <- add_noise(pbc_noise[[i]]) pbc_scale[[i]] <- change_scale(pbc_scale[[i]]) } # make sorted x and y matrices for testing internal cpp functions pbc_mats <- prep_test_matrices(pbc, outcomes = c("time", "status")) # penguins ---- penguins <- penguins_orsf penguins_binary <- penguins penguins_binary$species <- factor( penguins_binary$species, levels = c("Adelie", "Chinstrap", "Gentoo"), labels = c("Adelie", "not_Adelie", "not_Adelie") ) penguins_scale <- penguins_noise <- penguins vars <- c("bill_length_mm", "bill_depth_mm", "flipper_length_mm", "body_mass_g") for(i in vars){ penguins_noise[[i]] <- add_noise(penguins_noise[[i]]) penguins_scale[[i]] <- change_scale(penguins_scale[[i]]) } # make sorted x and y matrices for testing internal cpp functions penguins_mats <- prep_test_matrices(penguins, outcomes = c("species")) # data lists ---- data_list_pbc <- list(pbc_standard = pbc, pbc_status_12 = pbc_status_12, pbc_scaled = pbc_scale, pbc_noised = pbc_noise) data_list_penguins <- list(penguins_standard = penguins, penguins_binary = penguins_binary, penguins_scaled = penguins_scale, penguins_noised = penguins_noise) # matrix lists ---- mat_list_surv <- list(pbc = pbc_mats, flc = flc_mats, lcd = lcd_mats) # standard fits ---- # standards used to check validity of other fits seeds_standard <- 329 n_tree_test <- 5 controls_surv <- list( fast = orsf_control_survival(method = 'glm', scale_x = FALSE, max_iter = 1), net = orsf_control_survival(method = 'net'), custom = orsf_control_survival(method = f_pca) ) fit_standard_pbc <- lapply( controls_surv, function(cntrl){ orsf(pbc, formula = time + status ~ ., n_tree = n_tree_test, control = cntrl, tree_seed = seeds_standard) } ) controls_clsf <- list( fast = orsf_control_classification(method = 'glm', scale_x = FALSE, max_iter = 1), net = orsf_control_classification(method = 'net'), custom = orsf_control_classification(method = f_pca) ) fit_standard_penguin_species <- lapply( controls_clsf, function(cntrl){ orsf(penguins, formula = species ~ ., n_tree = n_tree_test, control = cntrl, tree_seed = seeds_standard) } ) controls_regr <- list( fast = orsf_control_regression(method = 'glm', scale_x = FALSE, max_iter = 1), net = orsf_control_regression(method = 'net'), custom = orsf_control_regression(method = f_pca) ) fit_standard_penguin_bills <- lapply( controls_regr, function(cntrl){ orsf(penguins, formula = bill_length_mm ~ ., n_tree = n_tree_test, control = cntrl, tree_seed = seeds_standard) } ) # training and testing data ---- pred_types_surv <- c(risk = 'risk', surv = 'surv', chf = 'chf', mort = 'mort', leaf = 'leaf') pred_types_clsf <- c(prob = 'prob', class = 'class', leaf = 'leaf') pred_types_regr <- c(mean = 'mean', leaf = 'leaf') pbc_train_rows <- sample(nrow(pbc_orsf), size = 170) pbc_train <- pbc[pbc_train_rows, ] pbc_test <- pbc[-pbc_train_rows, ] penguins_train_rows <- sample(nrow(penguins_orsf), size = 180) penguins_train <- penguins[penguins_train_rows, ] penguins_test <- penguins[-penguins_train_rows, ] penguins_binary_train <- penguins_binary[penguins_train_rows, ] penguins_binary_test <- penguins_binary[-penguins_train_rows, ]