context("Brusco et al. algorithm") library("anticlust") test_that("input and output work expectedly for Brusco algorithm", { # Test standard usage: K = number of groups anticlusters <- anticlustering( schaper2019[, 3:6], K = 3, method = "brusco" ) expect_true(all(table(anticlusters) == c(32, 32, 32))) # Different group sizes anticlusters <- anticlustering( schaper2019[, 3:6], K = c(48, 24, 24), method = "brusco" ) expect_true(all(table(anticlusters) == c(48, 24, 24))) # no categorical restrictions expect_error( anticlusters <- anticlustering( schaper2019[, 3:6], K = 4, categories = schaper2019$room, method = "brusco" ), regexp = "categorical" ) # no categorical restrictions expect_error( anticlusters <- anticlustering( schaper2019[, 3:6], K = 4, preclustering = TRUE, method = "brusco" ), regexp = "preclustering" ) # Test that bicriterion function works as intended -- equal sized groups bc <- bicriterion_anticlustering(schaper2019[, 3:6], K = 3, R = 20) tab <- apply(bc, 1, table) tab <- data.frame(tab) tab <- tab[order(tab$X1, decreasing = TRUE), ] expect_true(all(tab == c(32, 32, 32))) # Ensure that random seeds work with bicriterion algorithm (this is important # because the algorithm uses random number generation in C, should be # reproducible from R!) set.seed(1) anticlusters <- anticlustering( schaper2019[, 3:6], K = 4, method = "brusco" ) set.seed(1) anticlusters2 <- anticlustering( schaper2019[, 3:6], K = 4, method = "brusco" ) expect_true(all(anticlusters == anticlusters2)) # Other seed = different results set.seed(3) anticlusters3 <- anticlustering( schaper2019[, 3:6], K = 4, method = "brusco" ) expect_true(!all(anticlusters == anticlusters3)) # Same with the dispersion criterion # Ensure that random seeds work with bicriterion algorithm set.seed(1) anticlusters <- anticlustering( schaper2019[, 3:6], K = 4, method = "brusco", objective = "dispersion" ) set.seed(1) anticlusters2 <- anticlustering( schaper2019[, 3:6], K = 4, method = "brusco", objective = "dispersion" ) expect_true(all(anticlusters == anticlusters2)) # Other seed = different results set.seed(3) anticlusters3 <- anticlustering( schaper2019[, 3:6], K = 4, method = "brusco", objective = "dispersion" ) expect_true(!all(anticlusters == anticlusters3)) })