mixed_effects_model_one_ranef <- MixedEffectsModel( response_unit = list( "hst" = units::as_units("m") ), covariate_units = list( "dsob" = units::as_units("cm") ), parameters = list( beta_0 = 40.4218, beta_1 = -0.0276, beta_2 = 0.936, sigma_sq_b = 6.544, sigma_sq_epsilon = 2.693 ), predict_ranef = function(hst, dsob) { z <- hst - beta_0 * (1 - exp(beta_1 * dsob)^beta_2) Id <- diag(length(hst)) b_i <- sigma_sq_b * t(z) %*% solve(sigma_sq_epsilon * Id * z %*% t(z)) %*% (hst - beta_0 * (1 - exp(beta_1 * dsob))^beta_2) list(b_i = as.numeric(b_i)) }, predict_fn = function(dsob) { 1.37 + (beta_0 + b_i) * (1 - exp(beta_1 * dsob)^beta_2) } ) test_that("A mixed effects model with one ranef makes predictions", { newdata <- data.frame(hst = c(12, 10, 15), dsob = c(50, 43, 60)) pred <- predict(mixed_effects_model_one_ranef, 10, newdata = newdata) val <- 12.37626 units(val) <- "m" expect_equal(pred, val, tolerance = 0.001) }) test_that("Mixed effects model_call returns correctly formatted string", { expect_equal(model_call(mixed_effects_model_one_ranef), "hst = f(dsob, newdata)") }) mixed_effects_model_fixed_only <- MixedEffectsModel( response_unit = list( hst = units::as_units("m") ), covariate_units = list( dsob = units::as_units("cm") ), parameters = list( beta_0 = 40.4218, beta_1 = -0.0276, beta_2 = 0.936 ), predict_ranef = function() { list(b_0_i = 0, b_2_i = 0) }, predict_fn = function(dsob) { 1.37 + (beta_0 + b_0_i) * (1 - exp(beta_1 * dsob)^(beta_2 + b_2_i)) }, fixed_only = T ) test_that("A mixed effects model can be flagged as fixed only and predict", { pred <- predict(mixed_effects_model_fixed_only, 10) val <- 10.5726 units(val) <- "m" expect_equal(pred, val, tolerance = 0.001) })