context("RunModel_Lag") data(L0123001) test_that("'BasinAreas' must have one more element than 'LengthHydro'", { expect_error( InputsModel <- CreateInputsModel( FUN_MOD = RunModel_GR4J, DatesR = BasinObs$DatesR, Precip = BasinObs$P, PotEvap = BasinObs$E, Qupstream = matrix(BasinObs$Qmm, ncol = 1), LengthHydro = 1, BasinAreas = 1 ), regexp = "'BasinAreas' must have one more element than 'LengthHydro'" ) }) BasinAreas <- c(BasinInfo$BasinArea, BasinInfo$BasinArea) # Qupstream = sinusoid synchronised on hydrological year from 0 mm to mean value of Qobs Qupstream <- floor((sin((seq_along(BasinObs$Qmm)/365*2*3.14))+1) * mean(BasinObs$Qmm, na.rm = TRUE)) InputsModel <- CreateInputsModel( FUN_MOD = RunModel_GR4J, DatesR = BasinObs$DatesR, Precip = BasinObs$P, PotEvap = BasinObs$E, Qupstream = matrix(Qupstream, ncol = 1), LengthHydro = 1, BasinAreas = BasinAreas ) Ind_Run <- seq(which(format(BasinObs$DatesR, format = "%Y-%m-%d") == "1990-01-01"), which(format(BasinObs$DatesR, format = "%Y-%m-%d") == "1999-12-31")) RunOptions <- suppressWarnings(CreateRunOptions(FUN_MOD = RunModel_GR4J, InputsModel = InputsModel, IndPeriod_Run = Ind_Run)) test_that("QcontribDown parameter should be a numeric vector or an OutputModel object", { regexp = "'QcontribDown' must be a numeric vector or a 'OutputsModel' object" expect_error( RunModel_Lag(InputsModel = InputsModel, RunOptions = RunOptions, Param = 1, QcontribDown = "A"), regexp = regexp ) expect_error( RunModel_Lag(InputsModel = InputsModel, RunOptions = RunOptions, Param = 1, QcontribDown = NULL), regexp = regexp ) expect_error( RunModel_Lag(InputsModel = InputsModel, RunOptions = RunOptions, Param = 1, QcontribDown = matrix(1, ncol = 1)), regexp = regexp ) }) Param <- c(257.237556, 1.012237, 88.234673, 2.207958) # From vignettes/V01_get_started RunOptionsGR4J <- RunOptions RunOptionsGR4J$FeatFUN_MOD$NbParam <- 4 OutputsGR4JOnly <- RunModel_GR4J(InputsModel = InputsModel, RunOptions = RunOptionsGR4J, Param = Param) test_that("QcontribDown should contain a Qsim key", { QcontribDown <- OutputsGR4JOnly QcontribDown$Qsim <- NULL expect_error( RunModel_Lag(InputsModel = InputsModel, RunOptions = RunOptions, Param = 1, QcontribDown = QcontribDown), regexp = "should contain a key 'Qsim'" ) }) test_that("'QcontribDown$Qim' should have the same length as 'RunOptions$IndPeriod_Run'", { QcontribDown <- OutputsGR4JOnly QcontribDown$Qsim <- c(QcontribDown$Qsim, 0) expect_error( RunModel_Lag(InputsModel = InputsModel, RunOptions = RunOptions, Param = 1, QcontribDown = QcontribDown), regexp = "should have the same length as" ) }) test_that("OutputsModel must have a item 'QsimDown' equal to GR4J Qsim contribution", { expect_equal(OutputsGR4JOnly$Qsim, RunModel_Lag(InputsModel = InputsModel, RunOptions = RunOptions, Param = 1, QcontribDown = OutputsGR4JOnly)$QsimDown) }) test_that("RunModel(FUN=RunModel_Lag) should give same result as RunModel_Lag", { QcontribDown <- OutputsGR4JOnly Output_RunModel_Lag <- RunModel_Lag(InputsModel = InputsModel, RunOptions = RunOptions, Param = 1, QcontribDown = QcontribDown) Output_RunModel <- RunModel(InputsModel = InputsModel, RunOptions = RunOptions, Param = 1, FUN_MOD = RunModel_Lag, QcontribDown = QcontribDown) expect_equal(Output_RunModel, Output_RunModel_Lag) }) test_that("'Qupstream' contain NA values", { expect_warning( InputsModel <- CreateInputsModel( FUN_MOD = RunModel_GR4J, DatesR = BasinObs$DatesR, Precip = BasinObs$P, PotEvap = BasinObs$E, Qupstream = matrix(BasinObs$Qmm, ncol = 1), LengthHydro = 1, BasinAreas = BasinAreas ), regexp = "'Qupstream' contains NA values: model outputs will contain NAs" ) RunOptions <- suppressWarnings(CreateRunOptions(FUN_MOD = RunModel_GR4J, InputsModel = InputsModel, IndPeriod_Run = Ind_Run)) QcontribDown <- OutputsGR4JOnly # Warning with RunModel_Lag expect_warning( RunModel_Lag(InputsModel = InputsModel, RunOptions = RunOptions, Param = 1, QcontribDown = QcontribDown), regexp = "time steps with NA values" ) # No warning during calibration RunOptions$Outputs_Sim <- RunOptions$Outputs_Cal expect_warning( RunModel_Lag(InputsModel = InputsModel, RunOptions = RunOptions, Param = 1, QcontribDown = QcontribDown), regexp = NA ) }) test_that("Upstream basin with nil area should return same Qdown as GR4J alone", { InputsModel <- CreateInputsModel( FUN_MOD = RunModel_GR4J, DatesR = BasinObs$DatesR, Precip = BasinObs$P, PotEvap = BasinObs$E, Qupstream = matrix(Qupstream, ncol = 1), LengthHydro = 1, BasinAreas = c(0,BasinAreas[2]) ) OutputsSD <- RunModel(InputsModel, RunOptions, Param = c(1, Param), FUN_MOD = RunModel_GR4J) expect_equal(OutputsGR4JOnly$Qsim, OutputsSD$Qsim) }) test_that("Downstream basin with nil area and nul upstream length should return same Qdown as Qupstream alone", { InputsModel <- CreateInputsModel( FUN_MOD = RunModel_GR4J, DatesR = BasinObs$DatesR, Precip = BasinObs$P, PotEvap = BasinObs$E, Qupstream = matrix(Qupstream, ncol = 1), LengthHydro = 0, BasinAreas = c(BasinInfo$BasinArea, 0) ) OutputsSD <- RunModel(InputsModel, RunOptions, Param = c(1, Param), FUN_MOD = RunModel_GR4J) expect_equal(OutputsSD$Qsim, Qupstream[Ind_Run]) }) ParamSD <- c(InputsModel$LengthHydro * 1e3 / (24 * 60 * 60), Param) # Speed corresponding to one time step delay Qm3GR4Only <- OutputsGR4JOnly$Qsim * InputsModel$BasinAreas[2L] * 1e3 test_that("1 input with lag of 1 time step delay out gives an output delayed of one time step", { OutputsSD <- RunModel(InputsModel, RunOptions, Param = ParamSD, FUN_MOD = RunModel_GR4J) Qm3SdSim <- OutputsSD$Qsim_m3 Qm3UpstLagObs <- Qupstream[Ind_Run - 1] * InputsModel$BasinAreas[1] * 1e3 expect_equal(Qm3SdSim - Qm3GR4Only, Qm3UpstLagObs) }) test_that("1 input with lag of 0.5 time step delay out gives an output delayed of 0.5 time step", { OutputsSD <- RunModel(InputsModel, RunOptions, Param = c(InputsModel$LengthHydro * 1e3 / (12 * 3600), Param), FUN_MOD = RunModel_GR4J) Qm3SdSim <- OutputsSD$Qsim_m3 Qm3UpstLagObs <- (Qupstream[Ind_Run] + Qupstream[Ind_Run - 1]) / 2 * InputsModel$BasinAreas[1] * 1e3 expect_equal(Qm3SdSim - Qm3GR4Only, Qm3UpstLagObs) }) test_that("Qupstream in different units should return the same result", { OutputsSD_mm <- RunModel(InputsModel, RunOptions, Param = ParamSD, FUN_MOD = RunModel_GR4J) InputsModel_m3 <- CreateInputsModel( FUN_MOD = RunModel_GR4J, DatesR = BasinObs$DatesR, Precip = BasinObs$P, PotEvap = BasinObs$E, Qupstream = matrix(Qupstream, ncol = 1) * BasinAreas[1] * 1e3, LengthHydro = 1, BasinAreas = BasinAreas, QupstrUnit = "m3" ) OutputsSD_m3 <- RunModel(InputsModel_m3, RunOptions, Param = ParamSD, FUN_MOD = RunModel_GR4J) expect_equal(OutputsSD_mm$Qsim, OutputsSD_m3$Qsim) InputsModel_m3s <- CreateInputsModel( FUN_MOD = RunModel_GR4J, DatesR = BasinObs$DatesR, Precip = BasinObs$P, PotEvap = BasinObs$E, Qupstream = matrix(Qupstream, ncol = 1) * BasinAreas[1] * 1e3 / 86400, LengthHydro = 1, BasinAreas = BasinAreas, QupstrUnit = "m3/s" ) OutputsSD_m3s <- RunModel(InputsModel_m3s, RunOptions, Param = ParamSD, FUN_MOD = RunModel_GR4J) expect_equal(OutputsSD_mm$Qsim, OutputsSD_m3s$Qsim) InputsModel_ls <- CreateInputsModel( FUN_MOD = RunModel_GR4J, DatesR = BasinObs$DatesR, Precip = BasinObs$P, PotEvap = BasinObs$E, Qupstream = matrix(Qupstream, ncol = 1) * BasinAreas[1] * 1e6 / 86400, LengthHydro = 1, BasinAreas = BasinAreas, QupstrUnit = "L/s" ) OutputsSD_ls <- RunModel(InputsModel_ls, RunOptions, Param = ParamSD, FUN_MOD = RunModel_GR4J) expect_equal(OutputsSD_mm$Qsim, OutputsSD_ls$Qsim) }) InputsCrit <- CreateInputsCrit( FUN_CRIT = ErrorCrit_NSE, InputsModel = InputsModel, RunOptions = RunOptions, VarObs = "Q", Obs = (Qupstream[Ind_Run - 1] * BasinAreas[1L] + BasinObs$Qmm[Ind_Run] * BasinAreas[2L]) / sum(BasinAreas) ) test_that("Params from calibration with simulated data should be similar to initial params", { CalibOptions <- CreateCalibOptions( FUN_MOD = RunModel_GR4J, FUN_CALIB = Calibration_Michel, IsSD = TRUE ) OutputsCalib <- Calibration_Michel( InputsModel = InputsModel, RunOptions = RunOptions, InputsCrit = InputsCrit, CalibOptions = CalibOptions, FUN_MOD = RunModel_GR4J ) expect_equal(OutputsCalib$ParamFinalR[2:5] / ParamSD[2:5], rep(1, 4), tolerance = 1e-2) expect_equal(OutputsCalib$ParamFinalR[1L], ParamSD[1L], tolerance = 2e-3) }) test_that("Params from calibration with simulated data should be similar to initial params", { CalibOptions <- CreateCalibOptions( FUN_MOD = RunModel_Lag, FUN_CALIB = Calibration_Michel, IsSD = FALSE ) OutputsCalib <- Calibration_Michel( InputsModel = InputsModel, RunOptions = RunOptions, InputsCrit = InputsCrit, CalibOptions = CalibOptions, FUN_MOD = RunModel_Lag, QcontribDown = OutputsGR4JOnly ) expect_equal(OutputsCalib$ParamFinalR[1L], ParamSD[1L], tolerance = 2e-3) }) test_that("1 no area input with lag of 1 time step delay out gives an output delayed of one time step converted to mm", { Qm3GR4Only <- OutputsGR4JOnly$Qsim * BasinAreas[2L] * 1e3 # Specify that upstream flow is not related to an area InputsModel$BasinAreas <- c(NA, BasinAreas[2L]) # Convert upstream flow to m3/day InputsModel$Qupstream <- matrix(Qupstream, ncol = 1) * BasinAreas[1L] * 1e3 OutputsSD <- RunModel(InputsModel, RunOptions, Param = ParamSD, FUN_MOD = RunModel_GR4J) expect_false(any(is.na(OutputsSD$Qsim))) Qm3SdSim <- OutputsSD$Qsim_m3 Qm3UpstLagObs <- InputsModel$Qupstream[Ind_Run - 1] expect_equal(Qm3SdSim - Qm3GR4Only, Qm3UpstLagObs) }) # *** IniStates tests *** IM <- InputsModel IM$BasinAreas <- rep(BasinInfo$BasinArea, 3) IM$Qupstream <- cbind(IM$Qupstream, IM$Qupstream) IM$LengthHydro <- c(1, 1.5) PSDini <- ParamSD PSDini[1] <- PSDini[1] / 2 # 2 time step delay Ind_Run1 <- seq(which(format(BasinObs$DatesR, format = "%Y-%m-%d")=="1990-01-01"), which(format(BasinObs$DatesR, format = "%Y-%m-%d")=="1990-12-31")) Ind_Run2 <- seq(which(format(BasinObs$DatesR, format = "%Y-%m-%d")=="1991-01-01"), which(format(BasinObs$DatesR, format = "%Y-%m-%d")=="1991-12-31")) # 1990 RunOptions1 <- suppressWarnings(CreateRunOptions(FUN_MOD = RunModel_GR4J, InputsModel = IM, IndPeriod_Run = Ind_Run1)) OutputsModel1 <- RunModel(InputsModel = IM, RunOptions = RunOptions1, Param = PSDini, FUN_MOD = RunModel_GR4J) # 1990-1991 RunOptions <- suppressWarnings(CreateRunOptions(FUN_MOD = RunModel_GR4J, InputsModel = IM, IndPeriod_Run = c(Ind_Run1, Ind_Run2))) OutputsModel <- RunModel(InputsModel = IM, RunOptions = RunOptions, Param = PSDini, FUN_MOD = RunModel_GR4J) test_that("Warm start should give same result as warmed model", { # Warm start 1991 RunOptions2 <- CreateRunOptions(FUN_MOD = RunModel_GR4J, InputsModel = IM, IndPeriod_Run = Ind_Run2, IndPeriod_WarmUp = 0L, IniStates = OutputsModel1$StateEnd) OutputsModel2 <- RunModel(InputsModel = IM, RunOptions = RunOptions2, Param = PSDini, FUN_MOD = RunModel_GR4J) # Compare 1991 Qsim from warm started and from 1990-1991 names(OutputsModel2$Qsim) <- NULL expect_equal(OutputsModel2$Qsim, OutputsModel$Qsim[366:730]) }) test_that("Error on Wrong length of iniState$SD", { OutputsModel1$StateEnd$SD[[1]] <- c(1,1) RunOptions2 <- CreateRunOptions(FUN_MOD = RunModel_GR4J, InputsModel = IM, IndPeriod_Run = Ind_Run2, IndPeriod_WarmUp = 0L, IniStates = OutputsModel1$StateEnd) expect_error( RunModel(InputsModel = IM, RunOptions = RunOptions2, Param = PSDini, FUN_MOD = RunModel_GR4J) ) }) test_that("First Qupstream time steps must be repeated if warm-up period is too short", { IM2 <- IM[2558:3557] IM2$BasinAreas[3] <- 0 IM2$Qupstream <- matrix(rep(1:1000, 2), ncol = 2) RunOptions2 <- CreateRunOptions(FUN_MOD = RunModel_GR4J, InputsModel = IM2, IndPeriod_Run = seq_len(1000), IndPeriod_WarmUp = 0L) OM2 <- RunModel(InputsModel = IM2, RunOptions = RunOptions2, Param = PSDini, FUN_MOD = RunModel_GR4J) expect_equal(OM2$Qsim_m3[1:3], rep(2,3)) })