context("Binomial data distribution") test_that("Constructor works", { expect_true( Binomial(.2)@two_armed) expect_true( !Binomial(.4, two_armed = FALSE)@two_armed) expect_error( Binomial(-.1)) expect_error( Binomial(1.1)) }) # end 'constructor works' test_that("pdf is defined correctly", { dist <- Binomial(.1, TRUE) x <- seq(-3, 3, by = .1) n <- 22 theta <- .35 r_A <- theta + dist@rate_control sigma_A <- sqrt(sum(c(r_A * (1 - r_A), dist@rate_control * (1 - dist@rate_control)))) sigma_0 <- sqrt(2 * mean(c(r_A, dist@rate_control)) * (1 - mean(c(r_A, dist@rate_control)))) expect_equal( probability_density_function(dist, x, n, theta), stats::dnorm(x, mean = sqrt(n) * theta / sigma_0, sd = sigma_A / sigma_0), tolerance = 1e-6, scale = 1) }) test_that("cdf is defined correctly", { dist <- Binomial(.3, TRUE) x <- seq(-3, 3, by = .1) n <- 120 theta <- .02 r_A <- theta + dist@rate_control sigma_A <- sqrt(sum(c(r_A * (1 - r_A), dist@rate_control * (1 - dist@rate_control)))) sigma_0 <- sqrt(2 * mean(c(r_A, dist@rate_control)) * (1 - mean(c(r_A, dist@rate_control)))) expect_equal( cumulative_distribution_function(dist, x, n, theta), stats::pnorm(x, mean = sqrt(n) * theta / sigma_0, sd = sigma_A / sigma_0), tolerance = 1e-6, scale = 1) }) test_that("quantile is defined correctly", { dist <- Binomial(.6, FALSE) probs <- seq(.01, 1, by = .01) n <- 99 theta <- .125 r_A <- theta + dist@rate_control sigma_A <- sqrt(r_A * (1 - r_A)) sigma_0 <- sqrt(dist@rate_control * (1 - dist@rate_control)) expect_equal( quantile(dist, probs, n, theta), stats::qnorm(probs, mean = sqrt(n) * theta / sigma_0, sd = sigma_A / sigma_0), tolerance = 1e-6, scale = 1) expect_warning( quantile(dist, -1, n, theta) ) }) test_that("vectorization works", { dist <- Binomial(.3) prior <- PointMassPrior(c(.3, .4), c(.4, .6)) expect_equal( predictive_pdf(dist, prior, c(0, 1), 10), sapply(c(0, 1), function(x) predictive_pdf(dist, prior, x, 10)) ) }) # Let us check if the statistical tests are working correctly r_c <- .4 r_e <- .6 r_diff <- r_e - r_c dist <- Binomial(r_c) alpha <- 0.025 beta <- 0.2 n <- ceiling(rpact::getSampleSizeRates(alpha = alpha, beta = beta, groups = 2, normalApproximation = TRUE, pi1 = r_e, pi2 = r_c)$nFixed1) c <- qnorm(1 - alpha) test_that("Approximation works in cdf", { iters <- 1e6 p_c <- stats::rbinom(iters, n, r_c) / n p_e <- stats::rbinom(iters, n, r_e) / n p_e_2 <- stats::rbinom(iters, n, r_c) / n sigma_A <- sqrt(p_e * (1 - p_e) + p_c * (1 - p_c)) sigma_0 <- sqrt(p_e_2 * (1 - p_e_2) + p_c * (1 - p_c)) expect_equal( mean(1 - cumulative_distribution_function(dist, sqrt(n) * (p_e - p_c) / sigma_A, n, 0) <= alpha), 0.807, # reference: M. Kieser (2018), Fallzahlberechnung in der medizinischen Forschung, Tab. 5.2 tolerance = 1e-2, scale = 1 ) expect_equal( mean(1 - cumulative_distribution_function(dist, sqrt(n) * (p_e_2 - p_c) / sigma_0, n, 0) <= alpha), alpha, tolerance = 1 / sqrt(iters), scale = 1 ) }) test_that("Approximation works in evaluate", { design <- OneStageDesign(n, c) H_0 <- PointMassPrior(0, 1) H_1 <- PointMassPrior(r_diff, 1) expect_equal( evaluate(Power(dist, H_1), design), 1 - beta, tolerance = 1e-3, scale = 1 ) expect_equal( evaluate(Power(dist, H_0), design), alpha, tolerance = 1e-3, scale = 1 ) }) test_that("Approximation works in simulate", { iters <- 1e6 test_statistic_H0 <- simulate(object = dist, nsim = iters, n = n, theta = 0, seed = 42) test_statistic_H1 <- simulate(object = dist, nsim = iters, n = n, theta = r_diff, seed = 42) expect_equal( mean(test_statistic_H1 > c), 1 - beta, tolerance = 1 / sqrt(iters), scale = 1 ) expect_equal( mean(test_statistic_H0 > c), alpha, tolerance = 1 / sqrt(iters), scale = 1 ) }) test_that("show method", { expect_equal( capture.output(show(Binomial(.2))), "Binomial, response rate in control group: 0.2 " ) expect_equal( capture.output(show(Binomial(.8, two_armed = FALSE))), "Binomial, response rate in control group: 0.8 " ) })