test_that("adjClust methods returns expected 'calls'", { toto <- system.time({sim <- matrix( c(1.0, 0.1, 0.2, 0.3, 0.1, 1.0 ,0.4 ,0.5, 0.2, 0.4, 1.0, 0.6, 0.3, 0.5, 0.6, 1.0), nrow = 4) ## similarity, full width fit1 <- adjClust(sim, "similarity") lst <- as.list(fit1$call) expect_identical(lst[[1]], as.symbol("adjClust")) ## similarity, h < p-1 fit2 <- adjClust(sim, "similarity", h = 2) lst <- as.list(fit2$call) expect_identical(lst[[1]], as.symbol("adjClust")) ## dissimilarity dist <- as.dist(sqrt(2-(2*sim))) ## dissimilarity, full width fit3 <- adjClust(dist, "dissimilarity") lst <- as.list(fit3$call) expect_identical(lst[[1]], as.symbol("adjClust")) ## dissimilarity, h < p-1 fit4 <- adjClust(dist, "dissimilarity", h = 2) lst <- as.list(fit4$call) expect_identical(lst[[1]], as.symbol("adjClust"))}) }) test_that("adjClust methods properly catches unexpected 'calls'", { mat <- matrix(NA_character_) expect_error(adjClust(mat), "Input matrix is not numeric") mat <- matrix(NA_real_) expect_error(adjClust(mat), "Missing values in the input are not allowed") mat <- matrix(1:2) expect_error(adjClust(mat), "Input matrix is not symmetric") mat <- matrix(rep(1, 4), 2, 2) expect_error(adjClust(mat, h = NA_character_), "Input band width 'h' must be numeric") expect_error(adjClust(mat, h = -1), "Input band width 'h' must be non negative") expect_error(adjClust(mat, h = 0.1), "Input band width 'h' must be an integer") expect_error(adjClust(mat, h = 2), "Input band width 'h' must be strictly less than dimensions of matrix") adjClust(mat, strictCheck = FALSE) # dsyMatrix/dgeMatrix mat <- matrix(rep(1, 4), 2, 2) smat <- as(as(as(mat, "dMatrix"), "symmetricMatrix"), "unpackedMatrix") smat[1, 2] <- 2 # automatic coercion to dgeMatrix expect_error(adjClust(smat), "Input matrix is not symmetric") # dgTMatrix mat <- matrix(rep(1, 4), 2, 2) smat <- as(as(as(mat, "dMatrix"), "symmetricMatrix"), "sparseMatrix") expect_error(adjClust(smat, type = "dissimilarity"), "'type' can only be 'similarity' with sparse Matrix inputs") dmat <- as(as(as(smat, "dMatrix"), "symmetricMatrix"), "TsparseMatrix") expect_error(adjClust(dmat, type = "dissimilarity"), "'type' can only be 'similarity' with sparse Matrix inputs") dmat <- as(mat, "dgTMatrix") dmat[1, 2] <- 0 expect_error(adjClust(dmat), "Input matrix is not symmetric") }) test_that("'matL' and 'matR' are consistent with C++ versions", { sim <- matrix( c(1.0, 0.1, 0.2, 0.3, 0.1, 1.0 ,0.4 ,0.5, 0.2, 0.4, 1.0, 0.6, 0.3, 0.5, 0.6, 1.0), nrow = 4) ml <- matL(sim, h = 2) mr <- matR(sim, h = 2) mat <- as(sim, "dgCMatrix") expect_identical(matL_full(sim, h = 2), ml) expect_identical(matL(mat, h = 2), ml) expect_identical(matR_full(sim, h = 2), mr) expect_identical(matR(mat, h = 2), mr) expect_identical(matR_sparse(mat, h = 2), as(mr, "sparseMatrix")) expect_identical(matL_sparse(mat, h = 2), as(ml, "sparseMatrix")) })