context("Consistency of the results of 'snpClust' across various input formats") # check function kept for possible future usage check_snpStat_data <- function() { sf <- system.file("data/ld.example.RData", package="snpStats") expected <- "497fcd532b5c2bcb082a0dad7ca0d44d" if (!(tools::md5sum(sf) == expected)) { skip("Different version of data('ld.example', package = 'snpStats')") } } test_that("'snpClust' gives identical results regardless of data input format", { skip_if_not_installed("snpStats") check_snpStat_data() Sys.setenv("OMP_THREAD_LIMIT" = 2) data("ld.example", package = "snpStats") h <- 100 ld.ceph <- snpStats::ld(ceph.1mb, depth = h, stats = "R.squared") p <- ncol(ceph.1mb) nSamples <- nrow(ceph.1mb) h <- 100 ceph.1mb[4,286]@.Data[1,1] <- as.raw(3) ## to avoid NaNs # case0: Input belongs to class Matrix::dgCMatrix generated by snpStats::ld function # should throw error because input is not symmetric ld.ceph <- snpStats::ld(ceph.1mb, depth = h, stats = "R.squared") expect_false(isSymmetric(ld.ceph)) expect_warning(expect_error(snpClust(ld.ceph, h = 100)), "Forcing the LD similarity to be smaller than or equal to 1") # case1: Input belongs to class Matrix::dsCMatrix generated by snpStats::ld function # with 'symmetric=TRUE' ## diagonal elements are 0 ld.ceph <- snpStats::ld(ceph.1mb, depth = h, stats = "R.squared", symmetric = TRUE) # ld.ceph <- round(ld.ceph, digits = 10) expect_identical(unname(diag(ld.ceph)), rep(0, p)) ld.ceph[ld.ceph > 1] <- 1 expect_message(snpClust(ld.ceph, h = 100), "Note: forcing the diagonal of the LD similarity matrix to be 1", all = FALSE) fit1 <- snpClust(ld.ceph, h = 100) # LD values less than 0 or larger than 1 ld1 <- ld.ceph ld1[1,2] <- 1.1 expect_warning(snpClust(ld1, h = 100)) ld1[1,2] <- -0.1 ld1[2,1] <- -0.1 expect_warning(snpClust(ld1, h = 100)) rm(ld1) #case2: Input belongs to class snpStats::SnpMatrix expect_warning(fit2 <- snpClust(ceph.1mb, h = 100, stats = "R.squared"), "Forcing the LD similarity to be smaller than or equal to 1") expect_equal(fit2$merge, fit1$merge) expect_equal(fit2$height, fit1$height) expect_error(snpClust(ceph.1mb, h = ncol(ceph.1mb), stats = "R.squared"), "h should be strictly less than p") #case3: Input belongs class base::matrix ceph.1mb <- as.matrix(ceph.1mb) fit3 <- expect_warning(snpClust(ceph.1mb, h = 100, stats = "R.squared"), "Forcing the LD similarity to be smaller than or equal to 1") expect_equal(fit3$merge, fit1$merge) expect_equal(fit3$height, fit1$height) # increase test coverage ceph.1mb_nonames <- as.matrix(ceph.1mb) colnames(ceph.1mb_nonames) <- NULL rownames(ceph.1mb_nonames) <- NULL expect_warning(snpClust(ceph.1mb_nonames, h = 100, stats = "R.squared"), "Forcing the LD similarity to be smaller than or equal to 1") #case4: default h ld.ceph.2 <- snpStats::ld(ceph.1mb, depth = ncol(ceph.1mb) - 1, stats = "R.squared", symmetric = TRUE) fit4 <- suppressWarnings({ snpClust(ld.ceph.2, ncol(ceph.1mb) - 1) }) fit5 <- suppressWarnings({ snpClust(ld.ceph.2) }) fit6 <- expect_warning(snpClust(ceph.1mb, stats = "R.squared"), "Forcing the LD similarity to be smaller than or equal to 1") expect_equal(fit4$merge, fit5$merge) expect_equal(fit4$height, fit5$height) expect_equal(fit4$merge, fit6$merge) ## identical heights but different merges expect_equal(fit4$height, fit6$height) # test that hicClust methods returns expected 'calls' expect_identical(as.list(fit1$call)[[1]], as.symbol("snpClust")) expect_identical(as.list(fit2$call)[[1]], as.symbol("snpClust")) expect_identical(as.list(fit3$call)[[1]], as.symbol("snpClust")) expect_identical(as.list(fit4$call)[[1]], as.symbol("snpClust")) })