context("Check plotSim plots for all types of input") test_that("'plotSim' works for 'matrix'", { sim <- matrix(c(1.0, 0.1, 0.2, 0.3, 0.1, 1.0 ,0.4 ,0.5, 0.2, 0.4, 1.0, 0.6, 0.3, 0.5, 0.6, 1.0), nrow = 4) p <- plotSim(sim, "similarity", axis = TRUE, naxis = 2) expect_s3_class(p, "ggplot") fit1 <- adjClust(sim, "similarity") p <- plotSim(sim, "similarity", dendro = fit1) expect_s3_class(p, "ggplot") clust1 <- cutree_chac(fit1, k = 2) p <- plotSim(sim, "similarity", dendro = fit1, clustering = clust1) expect_s3_class(p, "ggplot") p <- plotSim(sim, dendro = as.hclust(fit1), clustering = clust1) expect_s3_class(p, "ggplot") expect_error(plotSim(sim, clustering = 1)) expect_error(plotSim(sim, clustering = c(1, 3, 3, 3))) expect_s3_class(p, "ggplot") expect_error(plotSim(sim, dendro = clust1)) expect_error(plotSim(sim, dendro = clust1)) expect_error(plotSim(sim, log = 1), "'log' must be logical") expect_error(plotSim(sim, legendName = 0), "'legendName' must be a string") expect_error(plotSim(sim, main = 1), "'main' must be a string") expect_error(plotSim(sim, axis = 1), "'axis' must be logical") expect_error(plotSim(sim, priorCount = "1"), "'priorCount' must be a single non-negative number!") expect_error(plotSim(sim, axis = TRUE, naxis = 1.2), "'naxis' must be a single value of type integer!") expect_warning(plotSim(sim, axis = TRUE, naxis = 5), "Reducing the number of ticks on x-axis to the number of objects.") expect_error(plotSim(sim, axis = TRUE, axistext = "1"), "'axistext' length must be equal to 'naxis'") expect_error(plotSim(sim, axis = TRUE, xlab = FALSE), "'xlab' must be a string!") p <- plotSim(sim, axis = TRUE, axistext = 1:nrow(sim)) p <- plotSim(sim, log = FALSE) p <- plotSim(sim, main = "main title") p <- plotSim(sim, axis = FALSE, dendro = fit1) mk <- make_coords(1:4, c(1:3, NA), 1:2) }) test_that("'plotSim' works for 'dgCMatrix'", { sim <- Matrix::Matrix( c(0, 2:0, 0, 0, 0, 2:0, 0, 0, 0, 2:0, 2:0, 0, 2:0, 0, 0), 5, 5) expect_warning(plotSim(sim, "dissimilarity"), "Input matrix was not symmetric. Plotting only the upper-triangular part of the matrix.") sim <- sim + t(sim) p <- plotSim(sim, "dissimilarity", axis = TRUE, naxis = 2) expect_s3_class(p, "ggplot") expect_message({ fit1 <- adjClust(1 - 2*sim, "similarity") }, "merges with non increasing heights", fixed = FALSE) fit1 <- correct(fit1) p <- plotSim(sim, "dissimilarity", dendro = fit1) expect_s3_class(p, "ggplot") clust1 <- cutree_chac(fit1, k = 2) p <- plotSim(sim, "dissimilarity", dendro = fit1, clustering = clust1) expect_s3_class(p, "ggplot") }) test_that("'plotSim' works for 'dsCMatrix'", { sim <- Matrix::Matrix(toeplitz(c(10, 0, 1, 0, 3)), sparse = TRUE) p <- plotSim(sim, "similarity", axis = TRUE, naxis = 2) expect_s3_class(p, "ggplot") expect_message({ fit1 <- adjClust(sim, "similarity") }, "merges with non increasing heights", fixed = FALSE) fit1 <- correct(fit1) p <- plotSim(sim, "dissimilarity", dendro = fit1) expect_s3_class(p, "ggplot") clust1 <- cutree_chac(fit1, k = 2) p <- plotSim(sim, "dissimilarity", dendro = fit1, clustering = clust1) expect_s3_class(p, "ggplot") }) test_that("'plotSim' works for 'dist'", { data("iris") dissim <- dist(iris[1:10, 1:4])^2 fit0 <- hclust(dissim, method = "ward.D") # permute so as to have constrained HAC = HAC dissim <- as.dist(as.matrix(dissim)[fit0$order,fit0$order]) expect_message( { p <- plotSim(dissim, axis = TRUE, naxis = 2) }, "input class is 'dist' so 'type' is supposed to be 'dissimilarity'", fixed = FALSE) expect_s3_class(p, "ggplot") sim <- 1-as.matrix(dissim)/2 fit2 <- adjClust(sim*2/9) p <- plotSim(dissim, "dissimilarity", dendro = fit2) expect_s3_class(p, "ggplot") }) test_that("'plotSim' works for 'HTCexp'", { testthat::skip_if_not_installed("HiTC") load(system.file("extdata", "hic_imr90_40_XX.rda", package = "adjclust")) p <- plotSim(hic_imr90_40_XX, axis = TRUE) expect_s3_class(p, "ggplot") expect_error(plotSim(hic_imr90_40_XX, type = "dissimilarity"), "type 'dissimilarity' does not match 'HTCexp' data") }) test_that("'plotSim' works for 'snpMatrix'", { skip_if_not_installed("snpStats") data("ld.example", package = "snpStats") ceph.1mb[4, 286]@.Data[1, 1] <- as.raw(3) ## to avoid NaNs p <- plotSim(ceph.1mb) expect_s3_class(p, "ggplot") p <- plotSim(ceph.1mb, h = 100, stats = "D.prime", axis = TRUE) expect_s3_class(p, "ggplot") msg <- "'h' should be numeric, larger than 0 and smaller than p." expect_error(plotSim(ceph.1mb, h = 0), msg) expect_error(plotSim(ceph.1mb, h = NA_character_), msg) expect_error(plotSim(ceph.1mb, h = ncol(ceph.1mb)), msg) })