context("Correctness of handling general similarity matrices") data("iris") dissim <- dist(iris[1:10,1:4])^2 sim <- 1-as.matrix(dissim)/2 sim2 <- sim - diag(0.9, ncol(sim)) fit <- adjClust(sim) fit2 <- adjClust(sim + diag(rep(3, ncol(sim)))) test_that("Results of 'adjclust' are shifted by lambda when similarity is shifted by lambda", { expect_equal(fit$height, fit2$height - 3, tolerance = 0.00001) expect_equal(fit$merge, fit2$merge) expect_equal(fit$correction, 0) }) test_that("Results of the algorithm are shifted by lambda when similarity is unnormalized and heights are positive", { expect_message(fit3 <- adjClust(sim2), "added") expect_message(fit4 <- adjClust(sim2), fit3$correction) tmp <- sweep(-2*sim2, 1, diag(sim2), "+") tmp <- sweep(tmp, 2, diag(sim2), "+") tmp <- tmp[upper.tri(tmp)] expect_equal(fit$height, fit3$height + min(tmp) * 1.01 + 0.9, tolerance = 0.00001) expect_equal(fit$merge, fit3$merge) expect_equal(sum(fit3$height < 0), 0) expect_gt(fit3$correction, 0) }) test_that("A message is displayed when 'select' is used on results obtained from preprocessed matrices", { suppressMessages({fit3 <- adjClust(sim2)}) expect_message(adjclust::select(fit3, type = "bstick"), "might be spurious") })