library(adestr) designad <- get_example_design() designgs <- readRDS("data/designgs.rds") options( list( # Root finding inside estimators adestr_tol_roots = 1e-3, adestr_maxiter_roots = 1e3, # Integrals used inside estimators adestr_tol_inner = 1e-2, adestr_maxEval_inner = 1e3, adestr_absError_inner = 1e-5, # Integrals to evaluate estimators adestr_tol_outer = 1e-3, adestr_maxEval_outer = 1e4, adestr_absError_outer = 1e-8 ) ) a <- evaluate_estimator( score = TestAgreement(), estimator = NaiveCI(), data_distribution = Normal(FALSE), use_full_twoarm_sampling_distribution = FALSE, design = designgs, mu = 0.15, sigma = 1 ) a a@integrals a <- evaluate_estimator( score = TestAgreement(), estimator = MLEOrderingCI(), data_distribution = Student(two_armed = TRUE), design = designad, mu = .3, sigma = 1 ) a