library(ade4) library(adegraphics) pdf("s1d.hist.pdf") set.seed(40) x1 <- rnorm(1000) g11 <- s1d.hist(x1) g12 <- s1d.hist(x1, col = 1:10) g13 <- s1d.hist(x1, col = FALSE, ppoly.col = 1:10) g14 <- s1d.hist(x1, col = TRUE, ppoly.col = "blue") set.seed(50) x1 <- rnorm(1000) g21 <- s1d.hist(x1) # p1d.hori = TRUE and p1d.reverse = FALSE by default # g22 <- s1d.hist(x1, p1d.hori = TRUE, p1d.rev = TRUE) g23 <- s1d.hist(x1, p1d.hori = FALSE, p1d.rev = FALSE) # g24 <- s1d.hist(x1, p1d.hori = FALSE, p1d.rev = TRUE) # randtest.pcaiv data(rpjdl, package = "ade4") millog <- log(rpjdl$mil + 1) coa1 <- dudi.coa(rpjdl$fau, scann = FALSE) caiv1 <- pcaiv(coa1, millog, scan = FALSE) set.seed(50) rd11 <- randtest(caiv1) plot(rd11) set.seed(50) rd12 <- randtest(caiv1, output = "full") plot(rd12, nclass = 15) # must be the same output as rd11 set.seed(50) rd13 <- randtest(caiv1, output = "full") plot(rd13, nclass = 8) plot(rd13, nclass = 8, plines.col = "red") plot(rd13, nclass = 8, obs.plines.col = "red") plot(rd13, nclass = 8, sim.plines.col = "red") # randtest.dpcoa data(humDNAm, package = "ade4") dpcoahum <- dpcoa(data.frame(t(humDNAm$samples)), sqrt(humDNAm$distances), scan = FALSE, nf = 2) set.seed(50) rd21 <- randtest(dpcoahum) plot(rd21) rd22 <- randtest(dpcoahum, output = "full") plot(rd22) # randtest.amova (plot.krandtest) amovahum <- amova(humDNAm$samples, sqrt(humDNAm$distances), humDNAm$structures) set.seed(50) rd31 <- randtest(amovahum, 49) plot(rd31) plot(rd31, plines.col = "red") plot(rd31, g1.plines.col = "red") set.seed(50) rd32 <- randtest(amovahum, 49, output = "full") plot(rd32) plot(rd32, plines.col = "red") plot(rd32, g1.plines.col = "red") plot(rd32, nclass = 30, g2.pback.col = "lightblue") # randtest.coinertia data(doubs, package = "ade4") dudi1 <- dudi.pca(doubs$env, scale = TRUE, scan = FALSE, nf = 3) dudi2 <- dudi.pca(doubs$fish, scale = FALSE, scan = FALSE, nf = 2) coin1 <- coinertia(dudi1,dudi2, scan = FALSE, nf = 2) set.seed(50) rd4 <- randtest(coin1) plot(rd4) # randtest.pcaivortho data(rpjdl, package = "ade4") millog <- log(rpjdl$mil + 1) coa1 <- dudi.coa(rpjdl$fau, scann = FALSE) caiv1 <- pcaiv(coa1, millog, scan = FALSE) set.seed(50) rd5 <- randtest(caiv1) plot(rd5) # randtest.rlq (plot.krandtest) data(aviurba, package = "ade4") coa1 <- dudi.coa(aviurba$fau, scannf = FALSE, nf = 2) dudimil <- dudi.hillsmith(aviurba$mil, scannf = FALSE, nf = 2, row.w = coa1$lw) duditrait <- dudi.hillsmith(aviurba$traits, scannf = FALSE, nf = 2, row.w = coa1$cw) rlq1 <- rlq(dudimil, coa1, duditrait, scannf = FALSE, nf = 2) set.seed(50) rd6 <- randtest(rlq1) plot(rd6) # randtest.between data(meaudret, package = "ade4") pca1 <- dudi.pca(meaudret$env, scan = FALSE, nf = 3) set.seed(50) rd7 <- randtest(bca(pca1, meaudret$design$season, scan = FALSE), 99) plot(rd7, main = "Monte-Carlo test") # randtest.discrimin set.seed(50) rd8 <- randtest(discrimin(pca1, meaudret$design$season, scan = FALSE), 99) plot(rd8, main = "Monte-Carlo test")