## delete/remove this file when 'scatter' functions will be removed in ade4 library(adegraphics) pdf("ade4-functions.pdf") ##################### scatter.dudi data(deug, package = "ade4") dd1 <- ade4::dudi.pca(deug$tab, scannf = FALSE, nf = 4) scatter(dd1, posieig = "bottomright") scatter(dd1, posieig = "bottomright", plot = T, prop = TRUE) scatter(dd1, posieig = "none", plot = T) scatter(dd1, posieig = "bottomleft", plot = T) scatter(dd1, posieig = "topright", plot = T) scatter(dd1, posieig = "topleft", plot = T, eig.col = c("white", "blue", "red")) data(rhone, package = "ade4") dd1 <- ade4::dudi.pca(rhone$tab, nf = 4, scannf = FALSE) g1 <- scatter(dd1, sub = "Principal component analysis", row = list(plabels.optim = TRUE), col.pla.boxes.alpha = 0.5) g1[2, drop = TRUE] scatter(dd1, row = list(sub = "Principal component analysis", plabels.optim = TRUE), col.pla.boxes.alpha = 0.5) scatter(dd1, prop = TRUE, ppoints.cex = 0.2, density.plot = TRUE, row = list(threshold = 0.01)) scatter(dd1, posieig = "none") scatter(dd1, posieig = "bottomright") scatter(dd1, posieig = c(0.5, 0.5)) scatter(dd1, posieig = c(0.5, 0.5, 1, 1)) ##################### scatter.coa data(housetasks, package = "ade4") par(mfrow = c(2, 2)) dd2 <- ade4::dudi.coa(housetasks, scan = FALSE) ade4::scatter(dd2, method = 1, sub = "1 / Standard", posieig = "none") ade4::scatter(dd2, method = 2, sub = "2 / Columns -> averaging -> Rows", posieig = "none") ade4::scatter(dd2, method = 3, sub = "3 / Rows -> averaging -> Columns ", posieig = "none") par(mfrow = c(1, 1)) g1 <- scatter(dd2, method = 1, row.sub = "1 / Standard", posieig = "none", plot = FALSE) g2 <- scatter(dd2, method = 2, col.sub = "2 / Columns -> averaging -> Rows", posieig = "none", plot = FALSE) g3 <- scatter(dd2, method = 3, row.sub = "3 / Rows -> averaging -> Columns ", posieig = "none", plot = FALSE) G <- ADEgS(list(g1, g2, g3), layout = c(2, 2), plot = TRUE) scatter(dd2, posieig = "none") scatter(dd2, posieig = "bottomright") scatter(dd2, posieig = c(0.5, 0.5)) scatter(dd2, posieig = c(0.5, 0.5, 1, 1)) ##################### scatter.pco data(yanomama, package = "ade4") gen <- ade4::quasieuclid(as.dist(yanomama$gen)) gen1 <- ade4::dudi.pco(gen, scann = FALSE, nf = 3) scatter(gen1, posieig = "none") scatter(gen1, posieig = "bottomri") scatter(gen1, posieig = c(0.5, 0.5)) scatter(gen1, posieig = c(0.5, 0.5, 1, 1)) ##################### scatter.nipals data(doubs, package = "ade4") acp1 <- ade4::dudi.pca(doubs$env, scannf = FALSE, nf = 2) nip1 <- ade4::nipals(doubs$env) scatter(nip1, posieig = "none") scatter(nip1, posieig = "bottomri") scatter(nip1, posieig = c(0.5, 0.5)) scatter(nip1, posieig = c(0.5, 0.5, 1, 1)) ##################### score.inertia - plot.inertia data(housetasks, package = "ade4") coa2 <- ade4::dudi.coa(housetasks, scann = FALSE) res21 <- ade4::inertia(coa2, row = TRUE, col = FALSE) plot(res21, posieig = "none") plot(res21, posieig = "bottomri") plot(res21, posieig = c(0.5,0.5)) plot(res21, posieig = c(0.5, 0.5, 1, 1)) score(res21, posieig = "none") score(res21, posieig = "bottomri") score(res21, posieig = c(0.5, 0.5)) score(res21, posieig = c(0.5, 0.5, 1, 1)) res22 <- ade4::inertia(coa2, row = FALSE, col = TRUE) plot(res22, posieig = "none") plot(res22, posieig = "bottomri") plot(res22, posieig = c(0.5, 0.5)) plot(res22, posieig = c(0.5, 0.5, 1, 1)) score(res22, posieig = "none") score(res22, posieig = "bottomri") score(res22, posieig = c(0.5, 0.5)) score(res22, posieig = c(0.5, 0.5, 1, 1)) res23 <- ade4::inertia(coa2, row = TRUE, col = TRUE) plot(res23, posieig = "none") plot(res23, posieig = "bottomri") plot(res23, posieig = c(0.5, 0.5)) plot(res23, posieig = c(0.5, 0.5, 1, 1)) score(res23, posieig = "none") score(res23, posieig = "bottomri") score(res23, posieig = c(0.5, 0.5)) score(res23, posieig = c(0.5, 0.5, 2, 2)) ##################### plot.acm data(lascaux, package = "ade4") acm1 <- ade4::dudi.acm(lascaux$ornem, sca = FALSE) p1 <- proc.time() ade4::scatter(acm1) Tade4 <- proc.time() - p1 p2 <- proc.time() plot(acm1, ppoints.cex = 0.3, plot = T) Tadegraphics <- proc.time() - p2 ## faster calculus, longest display than for ade4 ##################### plot.fca data(coleo, package = "ade4") coleo.fuzzy <- ade4::prep.fuzzy.var(coleo$tab, coleo$col.blocks) fca1 <- ade4::dudi.fca(coleo.fuzzy, scannf = FALSE, nf = 3) ade4::scatter(fca1) plot(fca1)