nursery_data$recommend <- as.character(nursery_data$recommend) nursery_data$recommend[which(nursery_data$recommend=="not_recom")] <- "0" nursery_data$recommend[which(nursery_data$recommend=="recommend")] <- "1" nursery_data$recommend[which(nursery_data$recommend=="very_recom")] <- "2" nursery_data$recommend[which(nursery_data$recommend=="priority")] <- "3" nursery_data$recommend[which(nursery_data$recommend=="spec_prior")] <- "4" nursery_data$recommend <- as.numeric(nursery_data$recommend) # extract relevant columns df = nursery_data[, c("recommend", "children")] # drop rows with missing values df = df[complete.cases(df), ] # formula to fit formula = "recommend ~ children" test_that("acro_lm without initialising ACRO object first", { ac <<- NULL expect_error(acro_lm(formula=formula, data=df), "ACRO has not been initialised. Please first call acro_init()") }) test_that("acro_lm works", { testthat::skip_on_cran() acro_init() model=acro_lm(formula=formula, data=df) expect_s3_class(model,"statsmodels.iolib.summary.Summary") })