# if running manually, please run the following line first: # source("tests/testthat/setup.R") tester <- function(accessibility_data = small_access, sociodemographic_data = land_use_data, opportunity = "jobs", population = "population", poverty_line = 10000, group_by = "mode") { fgt_poverty( accessibility_data, sociodemographic_data, opportunity, population, poverty_line, group_by ) } test_that("raises errors due to incorrect input", { expect_error(tester(opportunity = 1)) expect_error(tester(opportunity = c("schools", "jobs"))) expect_error(tester(population = 1)) expect_error(tester(population = c("schools", "jobs"))) expect_error(tester(poverty_line = "a")) expect_error(tester(poverty_line = -1)) expect_error(tester(group_by = 1)) expect_error(tester(group_by = NA)) expect_error(tester(group_by = "id")) expect_error(tester(group_by = c("mode", "mode"))) expect_error(tester(as.list(small_access))) expect_error(tester(small_access[, .(oi = id, jobs, mode)])) expect_error(tester(small_access[, .(id, oi = jobs, mode)])) expect_error(tester(small_access[, .(id, jobs, oi = mode)])) expect_error(tester(sociodemographic_data = as.list(land_use_data))) expect_error( tester(sociodemographic_data = land_use_data[, .(oi = id, population)]) ) expect_error( tester(sociodemographic_data = land_use_data[, .(id, oi = population)]) ) }) test_that("throws warning if accessibility_data has an extra col", { expect_warning(tester(group_by = character(0))) }) test_that("returns a dataframe with same class as accessibility_data's", { result <- tester() expect_is(result, "data.table") result <- tester(sociodemographic_data = as.data.frame(land_use_data)) expect_is(result, "data.table") result <- tester(as.data.frame(small_access)) expect_false(inherits(result, "data.table")) expect_is(result, "data.frame") result <- tester( as.data.frame(small_access), sociodemographic_data = as.data.frame(land_use_data) ) expect_false(inherits(result, "data.table")) expect_is(result, "data.frame") }) test_that("result has correct structure", { result <- tester() expect_true(ncol(result) == 4) expect_is(result$mode, "character") expect_is(result$FGT0, "numeric") expect_is(result$FGT1, "numeric") expect_is(result$FGT2, "numeric") suppressWarnings(result <- tester(group_by = character(0))) expect_true(ncol(result) == 3) expect_is(result$FGT0, "numeric") expect_is(result$FGT1, "numeric") expect_is(result$FGT2, "numeric") result <- tester(small_access[0]) expect_true(nrow(result) == 0) expect_true(ncol(result) == 4) expect_is(result$mode, "character") expect_is(result$FGT0, "numeric") expect_is(result$FGT1, "numeric") expect_is(result$FGT2, "numeric") suppressWarnings(result <- tester(small_access[0], group_by = character(0))) expect_true(nrow(result) == 0) expect_true(ncol(result) == 3) expect_is(result$FGT0, "numeric") expect_is(result$FGT1, "numeric") expect_is(result$FGT2, "numeric") }) test_that("input data sets remain unchanged", { original_access_data <- cumulative_cutoff( smaller_matrix, land_use_data, opportunity = "jobs", travel_cost = "travel_time", cutoff = 30, group_by = "mode" ) original_sociodem_data <- readRDS(file.path(data_dir, "land_use_data.rds")) result <- tester() expect_equal(original_access_data, small_access) expect_equal(original_sociodem_data, land_use_data) }) test_that("poverty levels are correctly calculated", { selected_ids <- c( "89a88cd909bffff", "89a88cdb57bffff", "89a88cdb597ffff", "89a88cdb5b3ffff", "89a88cdb5cfffff" ) access_data <- cumulative_cutoff( travel_matrix[from_id %in% selected_ids], land_use_data, opportunity = "jobs", travel_cost = "travel_time", cutoff = 30, group_by = "mode" ) # everything is 0 when all access levels are above the poverty line (10000) result <- tester(access_data) expected_result <- data.table::data.table( mode = c("transit", "transit2"), FGT0 = 0, FGT1 = 0, FGT2 = 0 ) expect_identical(result, expected_result) # FGT0 is 1 when all access levels are below poverty lines result <- tester(access_data, poverty_line = 100000) result[, `:=`(FGT1 = round(FGT1, 4), FGT2 = round(FGT2, 4))] expected_result <- data.table::data.table( mode = c("transit", "transit2"), FGT0 = 1, FGT1 = 0.5588, FGT2 = 0.3256 ) expect_identical(result, expected_result) access_data <- access_data[!(id == "89a88cdb5cfffff" & mode == "transit2")] result <- tester(access_data, poverty_line = 100000) result[, `:=`(FGT1 = round(FGT1, 4), FGT2 = round(FGT2, 4))] expected_result <- data.table::data.table( mode = c("transit", "transit2"), FGT0 = 1, FGT1 = c(0.5588, 0.6367), FGT2 = c(0.3256, 0.4129) ) expect_identical(result, expected_result) }) test_that("works even if access_data and sociodem_data has specific colnames", { selected_ids <- c( "89a88cdb57bffff", "89a88cdb5b3ffff" ) access_data <- cumulative_cutoff( travel_matrix[from_id %in% selected_ids], land_use_data, opportunity = "jobs", travel_cost = "travel_time", cutoff = 30, group_by = "mode" ) expected_result <- tester(access_data) access_data[, opportunity := "oi"] result <- suppressWarnings(tester(access_data)) expect_identical(expected_result, result) access_data[, opportunity := NULL] land_use_data[, population_temp := population] land_use_data[, population := 1] result <- tester(access_data, population = "population_temp") expect_identical(expected_result, result) land_use_data[, population := population_temp] land_use_data[, population_temp := NULL] access_data[, group_by := "oi"] result <- suppressWarnings(tester(access_data)) expect_identical(expected_result, result) access_data[, group_by := NULL] })