test_that("Test mostProbable() works", { load(file="testdata/buildscorecache_ex1.Rdata") invisible(mycache.test <- buildScoreCache(data.df=mydat, data.dists=mydists, method = "bayes", max.parents=1)) class(mycache.test) <- c("abnCache") expect_silent(mp.dag.test <- mostProbable(score.cache=mycache.test, verbose=FALSE)) }) test_that("mostProbable() is backward compatible with 'ex0.dag.data'", { skip_on_cran() # Skipped on CRAN because it requires the INLA package ## use built-in simulated data set mydat <- ex0.dag.data[,c("b1","b2","g1","g2","p1","p2")]; ## take a subset of cols ## setup distribution list for each node mydists <- list(b1="binomial", b2="binomial", g1="gaussian", g2="gaussian", p1="poisson", p2="poisson" ); #use simple banlist with no constraints ban <- matrix(c( # 1 2 3 4 5 6 0,0,0,0,0,0, # 1 0,0,0,0,0,0, # 2 0,0,0,0,0,0, # 3 0,0,0,0,0,0, # 4 0,0,0,0,0,0, # 5 0,0,0,0,0,0 # 6 ),byrow=TRUE,ncol=6); colnames(ban) <- rownames(ban) <- names(mydat); #names must be set ban["b1","b2"] <- 1; # now ban arc from b2 to b1 retain <- matrix(c( # 1 2 3 4 5 6 0,0,0,0,0,0, # 1 0,0,0,0,0,0, # 2 0,0,0,0,0,0, # 3 0,0,0,0,0,0, # 4 0,0,0,0,0,0, # 5 0,0,0,0,0,0 # 6 ),byrow=TRUE,ncol=6); colnames(retain) <- rownames(retain) <- names(mydat); #names must be set retain["g1","g2"] <- 1; # always retain arc from g2 to g1 # parent limits max.par <- list("b1"=1,"b2"=1,"g1"=1,"g2"=0,"p1"=1,"p2"=2); ## now build cache mycache <- buildScoreCache(data.df=mydat,data.dists=mydists, dag.banned=ban, dag.retained=retain,max.parents=max.par); #now find the globally best DAG expect_no_error({ mp.dag <- mostProbable(score.cache=mycache, verbose = FALSE); }) expect_equal(mp.dag$dag, retain) # get the corresponding best goodness of fit - network score expect_message({ m1 <- fitAbn(dag=mp.dag,data.df=mydat,data.dists=mydists)$mlik; }) expect_error({ m2 <- fitAbn(object = mp.dag,data.df=mydat,data.dists=mydists)$mlik; }, regexp = "'data.df' and 'object' provided but can only accept one of them") expect_no_message({ m2 <- fitAbn(object = mp.dag)$mlik; }) expect_equal(m1, m2) }) test_that("mostProbable() is backward compatible with 'ex1.dag.data'", { skip_on_cran() # Skipped on CRAN because it requires the INLA package ## Second example ############ mydat <- ex1.dag.data;## this data comes with abn see ?ex1.dag.data ## setup distribution list for each node mydists <- list(b1="binomial", p1="poisson", g1="gaussian", b2="binomial", p2="poisson", b3="binomial", g2="gaussian", b4="binomial", b5="binomial", g3="gaussian" ); #use simple banlist with no constraints ban <- matrix(c( # 1 2 3 4 5 6 0,0,0,0,0,0,0,0,0,0, # 1 0,0,0,0,0,0,0,0,0,0, # 2 0,0,0,0,0,0,0,0,0,0, # 3 0,0,0,0,0,0,0,0,0,0, # 4 0,0,0,0,0,0,0,0,0,0, # 5 0,0,0,0,0,0,0,0,0,0, # 6 0,0,0,0,0,0,0,0,0,0, # 7 0,0,0,0,0,0,0,0,0,0, # 8 0,0,0,0,0,0,0,0,0,0, # 9 0,0,0,0,0,0,0,0,0,0 # 10 ),byrow=TRUE,ncol=10); colnames(ban) <- rownames(ban) <- names(mydat); #names must be set retain <- matrix(c( # 1 2 3 4 5 6 0,0,0,0,0,0,0,0,0,0, # 1 0,0,0,0,0,0,0,0,0,0, # 2 0,0,0,0,0,0,0,0,0,0, # 3 0,0,0,0,0,0,0,0,0,0, # 4 0,0,0,0,0,0,0,0,0,0, # 5 0,0,0,0,0,0,0,0,0,0, # 6 0,0,0,0,0,0,0,0,0,0, # 7 0,0,0,0,0,0,0,0,0,0, # 8 0,0,0,0,0,0,0,0,0,0, # 9 0,0,0,0,0,0,0,0,0,0 # 10 ),byrow=TRUE,ncol=10); colnames(retain) <- rownames(retain) <- names(mydat); #names must be set ## parent limits max.par <- list("b1"=2,"p1"=2,"g1"=2,"b2"=2,"p2"=2,"b3"=2,"g2"=2,"b4"=2,"b5"=2,"g3"=2); ## now build cache mycache.exemple1 <- buildScoreCache(data.df=mydat,data.dists=mydists, dag.banned=ban, dag.retained=retain,max.parents=max.par); #now find the globally best DAG expect_no_error({ mp.dag <- mostProbable(score.cache=mycache.exemple1, verbose = FALSE); }) # get the corresponding best goodness of fit - network score expect_no_error({ expect_message({ m1 <- fitAbn(dag=mp.dag,data.df=mydat,data.dists=mydists)$mlik; # this is ok, because mp.dag is provided to 'dag=', eventhough it actually is an object. }) }) expect_error({ m1 <- fitAbn(dag=mp.dag)$mlik; }, regexp = "'data.df' is missing but must be provided") # if mp.dag is provided as dag, even it is an object, we need data.df and data.dists. expect_error({ m2 <- fitAbn(object = mp.dag,data.df=mydat,data.dists=mydists)$mlik; }, regexp = "'data.df' and 'object' provided but can only accept one of them") expect_no_message({ m2 <- fitAbn(object = mp.dag)$mlik; }) expect_equal(m1, m2) ## plot the best model expect_silent({ myres <- fitAbn(object=mp.dag,create.graph=TRUE); }) # create.graph argument is deprecated and should be ignored. plt <- plot(myres) plt.adjMat <- plt@adjMat mp.dag.adjMat <- mp.dag$dag rownames(mp.dag.adjMat) <- NULL expect_equal(plt.adjMat, mp.dag.adjMat) }) test_that("mostProbable() is backward compatible with 'ex3.dag.data'", { ################################################################# ## example 3 - models with random effects ################################################################# mydat <- ex3.dag.data[,c(1:4,14)]; ## this data comes with abn see ?ex3.dag.data mydists <- list(b1="binomial", b2="binomial", b3="binomial", b4="binomial" ); max.par <- 1; if(!testthat:::on_cran()) { if(requireNamespace("INLA", quietly = TRUE)){ mycache.mixed <- buildScoreCache(data.df=mydat,data.dists=mydists, group.var="group",cor.vars=c("b1","b2","b3","b4"), ## each node uses a random effect adjustment max.parents=max.par); ## find the most probable DAG expect_no_error({ mp.dag <- mostProbable(score.cache=mycache.mixed, verbose = FALSE); }) ## get goodness of fit expect_error({ m <- fitAbn(object = mp.dag,data.df=mydat,data.dists=mydists,group.var="group",cor.vars=c("b1","b2","b3","b4"))$mlik; }, regexp = "'data.df' and 'object' provided but can only accept one of them") expect_no_error({ m <- fitAbn(object = mp.dag,group.var="group",cor.vars=c("b1","b2","b3","b4"))$mlik; }) } } else { skip("INLA is not tested on CRAN") } }) test_that("mostProbable() simple, historic numeric test", { load(file="testdata/buildscorecache_ex1.Rdata") # load(file='tests/testthat/testdata/buildscorecache_ex1.Rdata') invisible(mycache.test <- buildScoreCache(data.df=mydat, data.dists=mydists, method = "bayes", max.parents=max.par)) class(mycache.test) <- c("abnCache") invisible(mp.dag.test <- mostProbable(score.cache=mycache.test, verbose=FALSE)) expect_equal(unclass(mp.dag.test[[1]]), (mp.dag)) })