test_that("Parsing DAG as formula works", { expected_output <- matrix(c(0,0,0,0,0,0,0,1,0), nrow = 3, dimnames = list(LETTERS[1:3], LETTERS[1:3])) expect_equal(formula_abn(~ A + B | C, name = c("A", "B", "C")), expected_output) dist <- list(a="gaussian", b="gaussian", c="gaussian", d="gaussian", e="gaussian", f="gaussian") m.formula.1 <- createAbnDag(dag=~a | b:c + b | c:d + a | e:f, data.dists=dist)$dag m.formula.2 <- createAbnDag(dag=~a | ., data.dists=dist)$dag m.true.1 <- matrix(data=c(0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), nrow=6, ncol=6, byrow=TRUE) m.true.2 <- matrix(data=c(0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), nrow=6, ncol=6, byrow=TRUE) colnames(m.true.1) <- rownames(m.true.1) <- colnames(m.true.2) <- rownames(m.true.2) <- names(dist) expect_equal(m.formula.1, m.true.1) expect_equal(m.formula.2, m.true.2) ## formula with real data df <- airquality[complete.cases(airquality), ] # distribution (gaussian) dist <- list(Ozone="gaussian", Solar.R="gaussian", Wind="gaussian", Temp="gaussian", Month="gaussian", Day="gaussian") names(dist) <- colnames(df) m.formula.1 <- createAbnDag(dag=~Ozone | Solar.R, data.dists=dist)$dag m.formula.2 <- createAbnDag(dag=~Solar.R | ., data.dists=dist)$dag m.true.1 <- matrix(data=c(0, 1, 0, 0, 0, 0, rep(0, 30)), nrow=6, ncol=6, byrow=TRUE) m.true.2 <- matrix(data=c(0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, rep(0, 24)), nrow=6, ncol=6, byrow=TRUE) colnames(m.true.1) <- rownames(m.true.1) <- colnames(m.true.2) <- rownames(m.true.2) <- names(dist) expect_equal(m.formula.1, m.true.1) expect_equal(m.formula.2, m.true.2) }) test_that("Data is checked properly", { set.seed(1234) df <- data.frame(A=as.factor(rbinom(20, 1, 0.6)), B=rpois(20, 0.5), C=rnorm(20), D=as.factor(sample(c("x", "y", "z"), 20, replace = T))) dists <- list(A="binomial", B="poisson", C="gaussian", D="multinomial") names(dists) <- colnames(df) expect_equal(check.valid.data(data.df = df, data.dists = dists, group.var = NULL), list(gaus=3, bin=1, pois=2, mult=4)) }) test_that("DAG is checked properly", { set.seed(1234) df <- data.frame(A=as.factor(rbinom(20, 1, 0.6)), B=rpois(20, 0.5), C=rnorm(20), D=as.factor(sample(c("x", "y", "z"), 20, replace = T))) d <- matrix(data=0, nrow=4, ncol=4) d[1, ] <- c(0, 1, 1, 1) colnames(d) <- rownames(d) <- names(df) expect_equal(check.valid.dag(dag = d, data.df = df, group.var = NULL), d) expect_error(check.valid.dag(dag = ~A)) # data.df missing expect_error(check.valid.dag(dag = ~a, data.df = c(a=1))) expect_equal(check.valid.dag(dag = ~a, data.df = data.frame(a=1)), matrix(0,1,1, dimnames=list("a","a"))) expect_error(check.valid.dag(dag = ~a|b+b|a, data.df = data.frame(a = c(0,1,4,5,6), b=c(1,2,3,4,5)))) # 1-diag(2), cyclic m1 <- matrix( 0, 2,2, dimnames=list(c("a","b"), c("a","b"))) expect_error(check.valid.dag(dag = m1[2:1,])) # rownames in reverse order to columnnames. }) test_that("Parent nodes limit is checked properly", { set.seed(1234) df <- data.frame(A=as.factor(rbinom(20, 1, 0.6)), B=rpois(20, 0.5), C=rnorm(20), D=as.factor(sample(c("x", "y", "z"), 20, replace = T))) expect_error(check.valid.parents(data.df = NULL, max.parents = NULL, group.var = NULL)) expect_error(check.valid.parents(data.df = df, max.parents = list(A=NULL, B=1, C=2, D=0), group.var = NULL)) expect_error(check.valid.parents(data.df = df, max.parents = dim(df)[2]+1, group.var = NULL)) expect_equal(check.valid.parents(data.df = df, max.parents = NULL, group.var = NULL), rep(dim(df)[2], dim(df)[2])) expect_equal(check.valid.parents(data.df = df, max.parents = c(1,1,1,1)), c(1,1,1,1)) expect_equal(check.valid.parents(data.df = df, max.parents = 0, group.var = NULL), c(0,0,0,0)) expect_equal(check.valid.parents(data.df = df, max.parents = 1, group.var = NULL), check.valid.parents(data.df = df, max.parents = 1)) }) test_that("Node validitiy is assessed properly", { set.seed(1234) df <- data.frame(A=as.factor(rbinom(20, 1, 0.6)), B=rpois(20, 0.5), C=rnorm(20), D=as.factor(sample(c("x", "y", "z"), 20, replace = T))) expect_error(check.which.valid.nodes(data.df = df, which.nodes = "A")) expect_error(check.which.valid.nodes(data.df = df, which.nodes = seq(1,dim(df)[2]+1))) # error if more nodes possible than variables in df expect_error(check.which.valid.nodes(data.df = df, which.nodes = -1)) expect_no_error(check.which.valid.nodes(data.df = df, which.nodes = NULL)) # no error if group.var is not passed expect_no_error(check.which.valid.nodes(data.df = df, which.nodes = c(1,2,3,4))) expect_equal(check.which.valid.nodes(data.df = df, which.nodes = 1), 1) }) test_that("Grouping variables are checked properly", { set.seed(1234) df <- data.frame(A=as.factor(rbinom(20, 1, 0.6)), B=rpois(20, 0.5), C=rnorm(20), D=as.factor(sample(c("x", "y", "z"), 20, replace = T)), G=as.factor(c(rep("A", 10), rep("B", 10)))) expect_error(check.valid.groups(group.var = NULL, data.df = NULL, cor.vars = NULL)) expect_error(check.valid.groups(group.var = 5, data.df = df, cor.vars = c("A", "B", "C", "D"))) expect_error(check.valid.groups(group.var = NULL, data.df = df, cor.vars = c("A", "B", "C", "D"))) expect_warning(check.valid.groups(group.var = "G", data.df = df, cor.vars = NULL, verbose = TRUE)) checkout <- check.valid.groups(group.var = "G", data.df = df, cor.vars = c("A", "B", "C", "D")) expect_equal(checkout$data.df,df[, which(names(df) != "G")]) expect_equal(checkout$grouped.vars, which(colnames(df[, which(names(df) != "G")]) %in% colnames(df))) expect_equal(checkout$group.ids, as.integer(df$G)) }) test_that("Distribution of variables is properly assessed.", { dists <- list(A="binomial", B="poisson", C="gaussian", D="multinomial") expect_equal(get.var.types(data.dists = dists), c(1,3,2,4)) wrongdists <- dists wrongdists$E <- "thisisnodistribution" expect_error(get.var.types(wrongdists)) }) test_that("check.valid.buildControls() works properly", { verbose <- TRUE for (method in c("bayes", "mle")) { expect_error({ check.valid.buildControls(control = "foo", method = method, verbose = verbose) }, regexp = "Control arguments must be provided as named list") expect_no_error({ check.valid.buildControls(control = NULL, method = method, verbose = verbose) }) expect_error({ check.valid.buildControls(control = list(foo = "bar"), method = method, verbose = verbose) }, regexp = "Unknown control") expect_no_error({ ctrl <- check.valid.buildControls(control = list(), method = method, verbose = verbose) }) expect_equal(ctrl, build.control(method = method)) expect_no_error({ ctrl <- check.valid.buildControls(control = list(seed = 42L), method = method, verbose = verbose) }) expect_equal(ctrl[["seed"]], 42L) expect_error({ check.valid.buildControls(control = list(seed = -1), method = method, verbose = verbose) }, regexp = "must be a non-negative integer") expect_error({ check.valid.buildControls(control = list(ncores = -10), method = method, verbose = verbose) }) expect_message({ check.valid.buildControls(control = list(ncores = 1e6), method = method, verbose = verbose) }, regexp = "Running in parallel with") expect_message({ check.valid.buildControls(control = list(ncores = 0), method = method, verbose = verbose) }, regexp = "Running in single core mode") expect_message({ check.valid.buildControls(control = list(ncores = -1), method = method, verbose = verbose) }) expect_error({ suppressWarnings(check.valid.buildControls(control = list(max.mode.error = -10), method = method, verbose = verbose)) }) expect_error({ suppressWarnings(check.valid.buildControls(control = list(max.mode.error = 101), method = method, verbose = verbose)) }) expect_no_error({ suppressWarnings(check.valid.buildControls(control = list(max.mode.error = 0), method = method, verbose = verbose)) suppressWarnings(check.valid.buildControls(control = list(max.mode.error = 100), method = method, verbose = verbose)) }) } expect_error({ check.valid.buildControls(control = list(), method = "foo") }, regexp = "unknown") expect_warning({ ctrl <- check.valid.buildControls(control = list(epsilon = 1e-08), method = "bayes") # epsilon parameter is only used in mle }, regexp = "Control parameters provided that are not used with method") expect_equal(length(ctrl), length(build.control(method = "bayes"))) }) test_that("check.valid.fitControls() works properly", { verbose <- TRUE for (method in c("bayes", "mle")) { expect_error({ check.valid.fitControls(control = "foo", method = method, verbose = verbose) }, regexp = "Control arguments must be provided as named list") expect_no_error({ check.valid.fitControls(control = NULL, method = method, verbose = verbose) }) expect_error({ check.valid.fitControls(control = list(foo = "bar"), method = method, verbose = verbose) }, regexp = "Unknown control") expect_no_error({ ctrl <- check.valid.fitControls(control = list(), method = method, verbose = verbose) }) expect_equal(ctrl, fit.control(method = method)) expect_no_error({ ctrl <- check.valid.fitControls(control = list(seed = 42L), method = method, verbose = verbose) }) expect_equal(ctrl[["seed"]], 42L) expect_error({ check.valid.fitControls(control = list(seed = -1), method = method, verbose = verbose) }, regexp = "must be a non-negative integer") expect_error({ check.valid.fitControls(control = list(ncores = -10), method = method, verbose = verbose) }) expect_message({ check.valid.fitControls(control = list(ncores = 1e6), method = method, verbose = verbose) }, regexp = "Running in parallel with") expect_message({ check.valid.fitControls(control = list(ncores = 0), method = method, verbose = verbose) }, regexp = "Running in single core mode") expect_message({ check.valid.fitControls(control = list(ncores = -1), method = method, verbose = verbose) }) expect_error({ suppressWarnings(check.valid.fitControls(control = list(max.mode.error = -10), method = method, verbose = verbose)) }) expect_error({ suppressWarnings(check.valid.fitControls(control = list(max.mode.error = 101), method = method, verbose = verbose)) }) expect_no_error({ suppressWarnings(check.valid.fitControls(control = list(max.mode.error = 0), method = method, verbose = verbose)) suppressWarnings(check.valid.fitControls(control = list(max.mode.error = 100), method = method, verbose = verbose)) }) } expect_error({ check.valid.fitControls(control = list(), method = "foo") }, regexp = "unknown") expect_warning({ ctrl <- check.valid.fitControls(control = list(epsilon = 1e-08), method = "bayes") # epsilon parameter is only used in mle }, regexp = "Control parameters provided that are not used with method") expect_equal(length(ctrl), length(fit.control(method = "bayes"))) })