test_that("print.abnDag() works.", { mydag <- createAbnDag(dag = ~a+b|a, data.df = data.frame("a"=1, "b"=1)) expect_output(print(mydag)) }) test_that("summary.abnDag() works.", { mydag <- createAbnDag(dag = ~a+b|a, data.df = data.frame("a"=1, "b"=1)) expect_no_error({ summary(mydag) }) }) test_that("plot.abnDag() works.", { mydag <- createAbnDag(dag = ~a+b|a, data.df = data.frame("a"=1, "b"=1)) if(.Platform$OS.type == "unix") { capture.output({ expect_no_error({ plot(mydag) }) }, file = "/dev/null") } }) test_that("print.abnCache() works.", { ## Subset of the build-in dataset, see ?ex0.dag.data mydat <- ex0.dag.data[,c("b1","b2","g1","g2","b3","g3")] ## take a subset of cols ## setup distribution list for each node mydists <- list(b1="binomial", b2="binomial", g1="gaussian", g2="gaussian", b3="binomial", g3="gaussian") # Structural constraints # ban arc from b2 to b1 # always retain arc from g2 to g1 ## parent limits max.par <- list("b1"=2, "b2"=2, "g1"=2, "g2"=2, "b3"=2, "g3"=2) ## now build the cache of pre-computed scores accordingly to the structural constraints res.c <- buildScoreCache(data.df=mydat, data.dists=mydists, dag.banned= ~b1|b2, dag.retained= ~g1|g2, max.parents=max.par) expect_output({ print(res.c) }) }) test_that("print.abnHeuristic() works.", { mydat <- ex1.dag.data ## this data comes with abn see ?ex1.dag.data ## setup distribution list for each node mydists<-list(b1="binomial", p1="poisson", g1="gaussian", b2="binomial", p2="poisson", b3="binomial", g2="gaussian", b4="binomial", b5="binomial", g3="gaussian") mycache <- buildScoreCache(data.df = mydat, data.dists = mydists, max.parents = 2) ## Now peform 10 greedy searches heur.res <- searchHeuristic(score.cache = mycache, data.dists = mydists, start.dag = "random", num.searches = 10, max.steps = 50) expect_output({ print(heur.res) }) }) test_that("plot.abnHeuristic() works.", { mydat <- ex1.dag.data ## this data comes with abn see ?ex1.dag.data ## setup distribution list for each node mydists<-list(b1="binomial", p1="poisson", g1="gaussian", b2="binomial", p2="poisson", b3="binomial", g2="gaussian", b4="binomial", b5="binomial", g3="gaussian") mycache <- buildScoreCache(data.df = mydat, data.dists = mydists, max.parents = 2) ## Now peform 10 greedy searches heur.res <- searchHeuristic(score.cache = mycache, data.dists = mydists, start.dag = "random", num.searches = 10, max.steps = 50) if(.Platform$OS.type == "unix") { capture.output({ expect_no_error({ plot(heur.res) }) }, file = "/dev/null") } }) test_that("print.abnHillClimber() works.", { ## this data comes with abn see ?ex1.dag.data mydat <- ex1.dag.data ## setup distribution list for each node mydists <- list(b1="binomial", p1="poisson", g1="gaussian", b2="binomial", p2="poisson", b3="binomial", g2="gaussian", b4="binomial", b5="binomial", g3="gaussian") ## Build cache may take some minutes for buildScoreCache() mycache <- buildScoreCache(data.df=mydat, data.dists=mydists, max.parents=2); # now peform 10 greedy searches heur.res <- searchHillClimber(score.cache=mycache, num.searches=10, timing.on=FALSE) expect_output({ print(heur.res) }) }) test_that("plot.abnHillClimber() works.", { skip("plotting for abnHillClimber is not up to date with searchHillClimber()'s output.") ## this data comes with abn see ?ex1.dag.data mydat <- ex1.dag.data ## setup distribution list for each node mydists <- list(b1="binomial", p1="poisson", g1="gaussian", b2="binomial", p2="poisson", b3="binomial", g2="gaussian", b4="binomial", b5="binomial", g3="gaussian") ## Build cache may take some minutes for buildScoreCache() mycache <- buildScoreCache(data.df=mydat, data.dists=mydists, max.parents=2); # now peform 10 greedy searches heur.res <- searchHillClimber(score.cache=mycache, num.searches=10, timing.on=FALSE) if(.Platform$OS.type == "unix") { capture.output({ expect_no_error({ plot(heur.res$dag, new=TRUE) }) }, file = "/dev/null") } }) test_that("print.abnMostprobable() works.", { ## This data comes with `abn` see ?ex1.dag.data mydat <- ex1.dag.data[1:5000, c(1:7,10)] ## Setup distribution list for each node: mydists <- list(b1="binomial", p1="poisson", g1="gaussian", b2="binomial", p2="poisson", b3="binomial", g2="gaussian", g3="gaussian") ## Parent limits, for speed purposes quite specific here: max.par <- list("b1"=0,"p1"=0,"g1"=1,"b2"=1,"p2"=2,"b3"=3,"g2"=3,"g3"=2) ## Now build cache (no constraints in ban nor retain) mycache <- buildScoreCache(data.df=mydat, data.dists=mydists, max.parents=max.par) ## Find the globally best DAG: mp.dag <- mostProbable(score.cache=mycache, verbose = FALSE) expect_output({ print(mp.dag) }) }) test_that("summary.abnMostprobable() works.", { ## This data comes with `abn` see ?ex1.dag.data mydat <- ex1.dag.data[1:5000, c(1:7,10)] ## Setup distribution list for each node: mydists <- list(b1="binomial", p1="poisson", g1="gaussian", b2="binomial", p2="poisson", b3="binomial", g2="gaussian", g3="gaussian") ## Parent limits, for speed purposes quite specific here: max.par <- list("b1"=0,"p1"=0,"g1"=1,"b2"=1,"p2"=2,"b3"=3,"g2"=3,"g3"=2) ## Now build cache (no constraints in ban nor retain) mycache <- buildScoreCache(data.df=mydat, data.dists=mydists, max.parents=max.par) ## Find the globally best DAG: mp.dag <- mostProbable(score.cache=mycache, verbose = FALSE) expect_output({ summary(mp.dag) }) }) test_that("plot.abnMostprobable() works.", { ## This data comes with `abn` see ?ex1.dag.data mydat <- ex1.dag.data[1:5000, c(1:7,10)] ## Setup distribution list for each node: mydists <- list(b1="binomial", p1="poisson", g1="gaussian", b2="binomial", p2="poisson", b3="binomial", g2="gaussian", g3="gaussian") ## Parent limits, for speed purposes quite specific here: max.par <- list("b1"=0,"p1"=0,"g1"=1,"b2"=1,"p2"=2,"b3"=3,"g2"=3,"g3"=2) ## Now build cache (no constraints in ban nor retain) mycache <- buildScoreCache(data.df=mydat, data.dists=mydists, max.parents=max.par) ## Find the globally best DAG: mp.dag <- mostProbable(score.cache=mycache, verbose = FALSE) if(.Platform$OS.type == "unix") { capture.output({ expect_no_error({ plot(mp.dag) }) }, file = "/dev/null") } }) test_that("print.abnFit() works.", { skip_on_cran() # Skipped on CRAN because it requires the INLA package ## This data comes with `abn` see ?ex1.dag.data mydat <- ex1.dag.data[1:5000, c(1:7,10)] ## Setup distribution list for each node: mydists <- list(b1="binomial", p1="poisson", g1="gaussian", b2="binomial", p2="poisson", b3="binomial", g2="gaussian", g3="gaussian") ## Parent limits, for speed purposes quite specific here: max.par <- list("b1"=0,"p1"=0,"g1"=1,"b2"=1,"p2"=2,"b3"=3,"g2"=3,"g3"=2) ## Now build cache (no constraints in ban nor retain) mycache <- buildScoreCache(data.df=mydat, data.dists=mydists, max.parents=max.par) ## Find the globally best DAG: mp.dag <- mostProbable(score.cache=mycache, verbose = FALSE) myres <- fitAbn(object=mp.dag,create.graph=TRUE, verbose = FALSE) expect_output({ print(myres) }) }) test_that("summary.abnFit() works.", { skip_on_cran() # Skipped on CRAN because it requires the INLA package ## This data comes with `abn` see ?ex1.dag.data mydat <- ex1.dag.data[1:5000, c(1:7,10)] ## Setup distribution list for each node: mydists <- list(b1="binomial", p1="poisson", g1="gaussian", b2="binomial", p2="poisson", b3="binomial", g2="gaussian", g3="gaussian") ## Parent limits, for speed purposes quite specific here: max.par <- list("b1"=0,"p1"=0,"g1"=1,"b2"=1,"p2"=2,"b3"=3,"g2"=3,"g3"=2) ## Now build cache (no constraints in ban nor retain) mycache <- buildScoreCache(data.df=mydat, data.dists=mydists, max.parents=max.par) ## Find the globally best DAG: mp.dag <- mostProbable(score.cache=mycache, verbose = FALSE) myres <- fitAbn(object=mp.dag,create.graph=TRUE, verbose = FALSE) expect_output({ summary(myres) }) }) test_that("coef.abnFit() works.", { skip_on_cran() # Skipped on CRAN because it requires the INLA package ## This data comes with `abn` see ?ex1.dag.data mydat <- ex1.dag.data[1:5000, c(1:7,10)] ## Setup distribution list for each node: mydists <- list(b1="binomial", p1="poisson", g1="gaussian", b2="binomial", p2="poisson", b3="binomial", g2="gaussian", g3="gaussian") ## Parent limits, for speed purposes quite specific here: max.par <- list("b1"=0,"p1"=0,"g1"=1,"b2"=1,"p2"=2,"b3"=3,"g2"=3,"g3"=2) ## Now build cache (no constraints in ban nor retain) mycache <- buildScoreCache(data.df=mydat, data.dists=mydists, max.parents=max.par) ## Find the globally best DAG: mp.dag <- mostProbable(score.cache=mycache, verbose = FALSE) myres <- fitAbn(object=mp.dag,create.graph=TRUE, verbose = FALSE) expect_output({ coef(myres) }) }) test_that("AIC.abnFit() works.", { skip_on_cran() # Skipped on CRAN because it requires the INLA package ## This data comes with `abn` see ?ex1.dag.data mydat <- ex1.dag.data[1:5000, c(1:7,10)] ## Setup distribution list for each node: mydists <- list(b1="binomial", p1="poisson", g1="gaussian", b2="binomial", p2="poisson", b3="binomial", g2="gaussian", g3="gaussian") ## Parent limits, for speed purposes quite specific here: max.par <- list("b1"=0,"p1"=0,"g1"=1,"b2"=1,"p2"=2,"b3"=3,"g2"=3,"g3"=2) ## Now build cache (no constraints in ban nor retain) mycache <- buildScoreCache(data.df=mydat, data.dists=mydists, max.parents=max.par) ## Find the globally best DAG: mp.dag <- mostProbable(score.cache=mycache, verbose = FALSE) myres <- fitAbn(object=mp.dag,create.graph=TRUE, verbose = FALSE) expect_output({ AIC(myres) }) }) test_that("BIC.abnFit() works.", { skip_on_cran() # Skipped on CRAN because it requires the INLA package ## This data comes with `abn` see ?ex1.dag.data mydat <- ex1.dag.data[1:5000, c(1:7,10)] ## Setup distribution list for each node: mydists <- list(b1="binomial", p1="poisson", g1="gaussian", b2="binomial", p2="poisson", b3="binomial", g2="gaussian", g3="gaussian") ## Parent limits, for speed purposes quite specific here: max.par <- list("b1"=0,"p1"=0,"g1"=1,"b2"=1,"p2"=2,"b3"=3,"g2"=3,"g3"=2) ## Now build cache (no constraints in ban nor retain) mycache <- buildScoreCache(data.df=mydat, data.dists=mydists, max.parents=max.par) ## Find the globally best DAG: mp.dag <- mostProbable(score.cache=mycache, verbose = FALSE) myres <- fitAbn(object=mp.dag,create.graph=TRUE, verbose = FALSE) expect_output({ BIC(myres) }) }) test_that("logLik.abnFit() works.", { skip_on_cran() # Skipped on CRAN because it requires the INLA package ## This data comes with `abn` see ?ex1.dag.data mydat <- ex1.dag.data[1:5000, c(1:7,10)] ## Setup distribution list for each node: mydists <- list(b1="binomial", p1="poisson", g1="gaussian", b2="binomial", p2="poisson", b3="binomial", g2="gaussian", g3="gaussian") ## Parent limits, for speed purposes quite specific here: max.par <- list("b1"=0,"p1"=0,"g1"=1,"b2"=1,"p2"=2,"b3"=3,"g2"=3,"g3"=2) ## Now build cache (no constraints in ban nor retain) mycache <- buildScoreCache(data.df=mydat, data.dists=mydists, max.parents=max.par) ## Find the globally best DAG: mp.dag <- mostProbable(score.cache=mycache, verbose = FALSE) myres <- fitAbn(object=mp.dag,create.graph=TRUE, verbose = FALSE) expect_output({ logLik(myres) }) }) test_that("family.abnFit() works.", { skip_on_cran() # Skipped on CRAN because it requires the INLA package ## This data comes with `abn` see ?ex1.dag.data mydat <- ex1.dag.data[1:5000, c(1:7,10)] ## Setup distribution list for each node: mydists <- list(b1="binomial", p1="poisson", g1="gaussian", b2="binomial", p2="poisson", b3="binomial", g2="gaussian", g3="gaussian") ## Parent limits, for speed purposes quite specific here: max.par <- list("b1"=0,"p1"=0,"g1"=1,"b2"=1,"p2"=2,"b3"=3,"g2"=3,"g3"=2) ## Now build cache (no constraints in ban nor retain) mycache <- buildScoreCache(data.df=mydat, data.dists=mydists, max.parents=max.par) ## Find the globally best DAG: mp.dag <- mostProbable(score.cache=mycache, verbose = FALSE) myres <- fitAbn(object=mp.dag,create.graph=TRUE, verbose = FALSE) expect_output({ family(myres) }) }) test_that("nobs.abnFit() works.", { skip_on_cran() # Skipped on CRAN because it requires the INLA package ## This data comes with `abn` see ?ex1.dag.data mydat <- ex1.dag.data[1:5000, c(1:7,10)] ## Setup distribution list for each node: mydists <- list(b1="binomial", p1="poisson", g1="gaussian", b2="binomial", p2="poisson", b3="binomial", g2="gaussian", g3="gaussian") ## Parent limits, for speed purposes quite specific here: max.par <- list("b1"=0,"p1"=0,"g1"=1,"b2"=1,"p2"=2,"b3"=3,"g2"=3,"g3"=2) ## Now build cache (no constraints in ban nor retain) mycache <- buildScoreCache(data.df=mydat, data.dists=mydists, max.parents=max.par) ## Find the globally best DAG: mp.dag <- mostProbable(score.cache=mycache, verbose = FALSE) myres <- fitAbn(object=mp.dag,create.graph=TRUE, verbose = FALSE) expect_equal({ nobs(myres) }, 5000) }) test_that("plot.abnFit() works.", { skip_on_cran() # Skipped on CRAN because it requires the INLA package ## This data comes with `abn` see ?ex1.dag.data mydat <- ex1.dag.data[1:5000, c(1:7,10)] ## Setup distribution list for each node: mydists <- list(b1="binomial", p1="poisson", g1="gaussian", b2="binomial", p2="poisson", b3="binomial", g2="gaussian", g3="gaussian") ## Parent limits, for speed purposes quite specific here: max.par <- list("b1"=0,"p1"=0,"g1"=1,"b2"=1,"p2"=2,"b3"=3,"g2"=3,"g3"=2) ## Now build cache (no constraints in ban nor retain) mycache <- buildScoreCache(data.df=mydat, data.dists=mydists, max.parents=max.par) ## Find the globally best DAG: mp.dag <- mostProbable(score.cache=mycache, verbose = FALSE) myres <- fitAbn(object=mp.dag,create.graph=TRUE, verbose = FALSE) if(.Platform$OS.type == "unix") { capture.output({ expect_no_error({ plot(myres, new = TRUE) }) }, file = "/dev/null") } })