test_that("Bootstrap process runs successfully with multiple variables", { # Create example data set.seed(123) # Generate 5 independent variables from normal distributions x1 <- rnorm(1000, 50, 10) x2 <- rnorm(1000, 30, 5) x3 <- rnorm(1000, 40, 8) x4 <- rnorm(1000, 60, 12) x5 <- rnorm(1000, 55, 7) # Compute the dependent variable y using a logistic transformation logit <- -4 + x1 * 0.04 + x2 * 0.05 + x3 * 0.02 + x4 * -0.03 + x5 * 0.01 p <- 1 / (1 + exp(-logit)) y <- rbinom(1000, 1, p) data <- data.frame(y, x1, x2, x3, x4, x5) # Fit the aRD model with a subset of predictors fit <- aRD(formula = y ~ x1 + x2 + x3, data = data) # Run the bootstrap procedure result <- bootaRD(fit, ci_level = 0.90, R = 1000L) # Extract the bootstrap object bootobj <- result$Bootstrap_Object # Checks expect_true(is.numeric(bootobj$t0)) expect_equal(length(bootobj$t[,1]), 1000) expect_gt(sum(complete.cases(bootobj$t)), 950) })