test_that("Binary treatment", { skip_if_not_installed("rootSolve") skip_if_not_installed("cobalt") eps <- if (capabilities("long.double")) 1e-5 else 1e-1 test_data <- readRDS(test_path("fixtures", "test_data.rds")) expect_no_condition({ W0 <- weightit(A ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9, data = test_data, method = "ipt", estimand = "ATE", include.obj = TRUE) }) expect_M_parts_okay(W0, tolerance = eps) sw.opts <- c(FALSE, TRUE) estimand.opts <- c("ATE", "ATT", "ATC") link.opts <- c("logit", "probit", "loglog", "cauchit") weight.mat <- matrix(nrow = nrow(test_data), ncol = length(sw.opts) * length(estimand.opts) * length(link.opts)) colnames(weight.mat) <- rep("", ncol(weight.mat)) k <- 1 for (sw in sw.opts) { for (estimand in estimand.opts) { for (link in link.opts) { expect_no_condition({ W <- weightit(A ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9, data = test_data, method = "ipt", estimand = estimand, link = link, s.weights = if (sw) "SW" else NULL, include.obj = TRUE) }) n <- sprintf("W_%s_%s_%s", sw, estimand, link) assign(n, W) expect_M_parts_okay(W, tolerance = eps) expect_equal(cobalt::col_w_smd(W$covs, W$treat, W$weights, s.weights = W$s.weights), 0 * cobalt::col_w_smd(W$covs, W$treat, s.weights = W$s.weights), label = sprintf("SMDs for %s", n), expected.label = "all 0s", tolerance = eps) expect_true(is.numeric((!!{{ str2lang(n) }})$ps)) expect_false(is_null((!!{{ str2lang(n) }})$obj)) for (i in 0:1) { e <- { if (estimand == "ATT" && i == 1) expect_equal else if (estimand == "ATC" && i == 0) expect_equal else expect_not_equal } e(W$weights[W$treat == i], rep(1, sum(W$treat == i)), label = sprintf("%s weights for %s", i, n), expected.label = "all 1s", tolerance = eps) } for (i in seq_len(k - 1)) { expect_not_equal(W$weights, weight.mat[,i], label = sprintf("Weights for %s", n), expected.label = sprintf("weights for %s", colnames(weight.mat)[i]), tolerance = eps) } colnames(weight.mat)[k] <- n weight.mat[,k] <- W$weights k <- k + 1 rm(list = n) } } } # Estimands expect_error({ W <- weightit(A ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9, data = test_data, method = "ipt", estimand = "ATO") }, "not an allowable estimand") #Non-full rank expect_no_condition({ W <- weightit(A ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + I(1 - X5) + I(X9 * 2), data = test_data, method = "ipt", estimand = "ATE", include.obj = TRUE) }) expect_M_parts_okay(W, tolerance = eps) expect_equal(W$weights, W0$weights, tolerance = eps) #Should be equivalent to CBPS for ATT for (sw in sw.opts) { for (link in link.opts) { expect_no_condition({ W <- weightit(A ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9, data = test_data, method = "ipt", estimand = "ATT", s.weights = if (sw) "SW" else NULL, link = link, include.obj = TRUE) }) n <- sprintf("W_%s_%s", sw, link) expect_no_condition({ Wcbps <- weightit(A ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9, data = test_data, method = "cbps", estimand = "ATT", s.weights = if (sw) "SW" else NULL, link = link, solver = "multiroot", include.obj = TRUE) }) ncbps <- sprintf("Wcbps_%s_%s", sw, link) expect_equal(ESS(W$weights[W$treat == 0] * W$s.weights[W$treat == 0]), ESS(Wcbps$weights[Wcbps$treat == 0] * Wcbps$s.weights[Wcbps$treat == 0]), label = sprintf("ESS for %s", n), expected.label = sprintf("ESS for %s", ncbps), tolerance = .01) } } }) test_that("Multi-category treatment", { skip_if_not_installed("rootSolve") skip_if_not_installed("cobalt") eps <- if (capabilities("long.double")) 1e-5 else 1e-1 test_data <- readRDS(test_path("fixtures", "test_data.rds")) expect_no_condition({ W0 <- weightit(Am ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9, data = test_data, method = "ipt", estimand = "ATE", include.obj = TRUE) }) sw.opts <- c(FALSE, TRUE) estimand.opts <- c("ATE", "ATT") link.opts <- c("logit", "probit", "loglog", "cauchit") weight.mat <- matrix(nrow = nrow(test_data), ncol = length(sw.opts) * length(estimand.opts) * length(link.opts)) colnames(weight.mat) <- rep("", ncol(weight.mat)) k <- 1 for (sw in sw.opts) { for (estimand in estimand.opts) { for (link in link.opts) { expect_no_condition({ W <- weightit(Am ~ X1 + X2 + X3 + X4 + X5, data = test_data, method = "ipt", estimand = estimand, focal = if (estimand == "ATE") NULL else "T", s.weights = if (sw) "SW" else NULL, link = link, include.obj = TRUE) }) n <- sprintf("W_%s_%s_%s", sw, estimand, link) assign(n, W) expect_M_parts_okay(W, tolerance = eps) for (tt in combn(levels(W$treat), 2, simplify = FALSE)) { in_tt <- W$treat %in% tt expect_equal(cobalt::col_w_smd(W$covs[in_tt,], W$treat[in_tt], W$weights[in_tt], s.weights = W$s.weights[in_tt]), 0 * cobalt::col_w_smd(W$covs[in_tt,], W$treat[in_tt], s.weights = W$s.weights[in_tt]), label = sprintf("SMDs for %s", n), expected.label = "all 0s", tolerance = eps) } expect_true(is_null((!!{{ str2lang(n) }})$ps)) expect_false(is_null((!!{{ str2lang(n) }})$obj)) for (i in levels(W$treat)) { e <- { if (estimand == "ATT" && i == W$focal) expect_equal else expect_not_equal } e(W$weights[W$treat == i], rep(1, sum(W$treat == i)), label = sprintf("%s weights for %s", i, n), expected.label = "all 1s", tolerance = eps) } for (i in seq_len(k - 1)) { expect_not_equal(W$weights, weight.mat[,i], label = sprintf("Weights for %s", n), expected.label = sprintf("weights for %s", colnames(weight.mat)[i]), tolerance = eps) } colnames(weight.mat)[k] <- n weight.mat[,k] <- W$weights k <- k + 1 rm(list = n) } } } })