context("Noether Minimize and Maximize") # data x <- c(315,375,356,374,412,418,445,403,431,410,391,475,379) y <- x - 20 N <- 112 # calculate sample size, true result result_t_max <- 0.4964661 result_t_min <- 0.4964905 result_power <- 0.9200000 #0.76 #temporary fix suppressWarnings(RNGversion("3.5.0")) set.seed(1) result_simpower <- summary(WMWssp::WMWssp_minimize(x, y, simulation = TRUE, nsim = 50))[3, ] test_that("function WMWssp_maximize", { expect_equivalent(WMWssp::WMWssp_maximize(x, y, alpha = 0.05, N)$t, result_t_max, tolerance=1e-4) }) test_that("function WMWssp_minimize", { expect_equivalent(WMWssp::WMWssp_minimize(x, y)$t, result_t_min, tolerance=1e-4) expect_equivalent(WMWssp::WMWssp(x, y, t = "min")$t, result_t_min, tolerance=1e-4) expect_output(summary(WMWssp::WMWssp_minimize(x, y))) expect_output(print(WMWssp::WMWssp_minimize(x, y))) expect_equivalent(result_power, result_simpower) expect_output(summary(WMWssp::WMWssp_minimize(x, y, simulation = TRUE, nsim = 10))) expect_output(print(WMWssp::WMWssp_minimize(x, y, simulation = TRUE, nsim = 10))) })