data("portfolio_mort") if(!interactive()) pdf(NULL) # Data---- d <- portfolio_mort$d ec <- portfolio_mort$ec y <- log(d / ec) y[d == 0] <- - 20 wt <- d compare_fits <- function(f1, f2, tolerance = 1e-6) { expect_equal(f1$y_hat, f2$y_hat, tolerance = tolerance) expect_equal(f1$std_y_hat, f2$std_y_hat, tolerance = 100 * tolerance) expect_equal(f1$diagnosis$REML, f2$diagnosis$REML, tolerance = 10 * tolerance) } compare_reml <- function(f1, f2, tolerance = 1e-5) { expect_equal(f1$diagnosis$REML, f2$diagnosis$REML, tolerance = tolerance) } # Regression---- test_that("Various way of invoking the regression framework are working", { ref_fixed_lambda <- WH_1d_fixed_lambda(y = y, wt = wt, lambda = 1e2, reg = TRUE) # expect_equal(WH_1d_fixed_lambda(y = y, wt = wt, lambda = 1e2, reg = TRUE), # WH_1d_fixed_lambda(y = y, wt = wt, lambda = 1e2, reg = TRUE)) compare_fits(WH_1d(y = y, wt = wt, lambda = 1e2), ref_fixed_lambda) compare_fits(WH_1d(d, ec, framework = "reg", lambda = 1e2), ref_fixed_lambda) compare_fits(WH_1d(d, y = y, lambda = 1e2), ref_fixed_lambda) }) test_that("Outer iteration method calls the right function and is the default method", { ref_outer <- WH_1d_outer(y = y, wt = wt, reg = TRUE) # expect_equal(WH_1d_outer(y = y, wt = wt, reg = TRUE), # WH_1d_outer(y = y, wt = wt, reg = TRUE)) compare_fits(WH_1d(y = y, wt = wt, method = "outer"), ref_outer) compare_fits(WH_1d(y = y, wt = wt), ref_outer) }) test_that("Performance iteration method calls the right function", { ref_perf <- WH_1d_perf(y = y, wt = wt, reg = TRUE) # expect_equal(WH_1d_perf(y = y, wt = wt, reg = TRUE), # WH_1d_perf(y = y, wt = wt, reg = TRUE)) compare_fits(WH_1d(y = y, wt = wt, method = "perf"), ref_perf) }) test_that("REML is the default criterion", { ref_outer <- WH_1d_outer(y = y, wt = wt, reg = TRUE) compare_fits(WH_1d(y = y, wt = wt, criterion = "REML"), ref_outer) }) test_that("Outer and performance iteration methods give very close results", { ref_perf <- WH_1d_perf(y = y, wt = wt, reg = TRUE) ref_outer <- WH_1d_outer(y = y, wt = wt, reg = TRUE) compare_reml(ref_perf, ref_outer) }) test_that("Other smoothing parameter selection criteria are working as well", { compare_fits(WH_1d(y = y, wt = wt, criterion = "AIC"), WH_1d_outer(y = y, wt = wt, criterion = "AIC", reg = TRUE)) compare_fits(WH_1d(y = y, wt = wt, criterion = "BIC"), WH_1d_outer(y = y, wt = wt, criterion = "BIC", reg = TRUE)) compare_fits(WH_1d(y = y, wt = wt, criterion = "GCV"), WH_1d_outer(y = y, wt = wt, criterion = "GCV", reg = TRUE)) }) test_that("Rank reduction works", { ref_perf <- WH_1d_perf(y = y, wt = wt, reg = TRUE) ref_outer <- WH_1d_outer(y = y, wt = wt, reg = TRUE) ref_perf_red <- WH_1d_perf(y = y, wt = wt, p = 20, reg = TRUE) ref_outer_red <- WH_1d_outer(y = y, wt = wt, p = 20, reg = TRUE) compare_fits(WH_1d(y = y, wt = wt, method = "outer", p = 20), ref_outer_red) compare_fits(WH_1d(y = y, wt = wt, method = "perf", p = 20), ref_perf_red) compare_reml(ref_perf_red, ref_perf, tolerance = 1e-1) compare_reml(ref_outer_red, ref_outer, tolerance = 1e-1) compare_reml(ref_perf_red, ref_outer_red) }) # Maximum likelihood---- test_that("Supplying lambda calls the fixed lambda function directly in the ML framework", { # expect_equal(WH_1d(d, ec, lambda = 1e2), WH_1d(d, ec, lambda = 1e2)) compare_fits(WH_1d(d, ec, lambda = 1e2), WH_1d_fixed_lambda(d, ec, lambda = 1e2)) }) test_that("Outer iteration method calls the right function and is the default method", { ref_ml_outer <- WH_1d_outer(d, ec) # expect_equal(WH_1d_outer(d, ec), WH_1d_outer(d, ec)) compare_fits(WH_1d(d, ec, method = "outer"), ref_ml_outer) compare_fits(WH_1d(d, ec), ref_ml_outer) }) test_that("Performance iteration method calls the right function", { ref_ml_perf <- WH_1d_perf(d, ec) # expect_equal(WH_1d_perf(d, ec), WH_1d_perf(d, ec)) compare_fits(WH_1d(d, ec, method = "perf"), ref_ml_perf) }) test_that("REML is the default criterion", { ref_ml_outer <- WH_1d_outer(d, ec) compare_fits(WH_1d_outer(d, ec, criterion = "REML"), ref_ml_outer) }) test_that("Outer and performance iteration methods give close enough results", { ref_ml_perf <- WH_1d_perf(d, ec) ref_ml_outer <- WH_1d_outer(d, ec) compare_fits(ref_ml_perf, ref_ml_outer, tolerance = 1e-1) }) test_that("Other smoothing parameter selection criteria are working as well", { compare_fits(WH_1d(d, ec, criterion = "AIC"), WH_1d_outer(d, ec, criterion = "AIC"), tolerance = 1e-2) compare_fits(WH_1d(d, ec, criterion = "BIC"), WH_1d_outer(d, ec, criterion = "BIC"), tolerance = 1e-2) compare_fits(WH_1d(d, ec, criterion = "GCV"), WH_1d_outer(d, ec, criterion = "GCV"), tolerance = 1e-2) }) test_that("Rank reduction works", { ref_ml_perf <- WH_1d_perf(d, ec) ref_ml_outer <- WH_1d_outer(d, ec) ref_ml_perf_red <- WH_1d_perf(d, ec, p = 20) ref_ml_outer_red <- WH_1d_outer(d, ec, p = 20) compare_fits(WH_1d(d, ec, method = "perf", p = 20), ref_ml_perf_red) compare_fits(WH_1d(d, ec, method = "outer", p = 20), ref_ml_outer_red) compare_fits(ref_ml_perf_red, ref_ml_perf, tolerance = 1e-1) compare_fits(ref_ml_outer_red, ref_ml_outer, tolerance = 1e-1) compare_fits(ref_ml_perf_red, ref_ml_outer_red, tolerance = 1e-1) }) # Plots---- test_that("Plot functions work", { expect_no_error({ # Regression ref_perf <- WH_1d_perf(y = y, wt = wt, reg = TRUE) ref_outer <- WH_1d_outer(y = y, wt = wt, reg = TRUE) ref_perf |> plot() ref_outer |> plot() ref_perf |> plot("res") ref_outer |> plot("res") ref_perf |> plot("edf") ref_outer |> plot("edf") # Maximum likelihood ref_ml_perf <- WH_1d_perf(d, ec) ref_ml_outer <- WH_1d_outer(d, ec) ref_ml_perf |> plot() ref_ml_outer |> plot() ref_ml_perf |> plot("res") ref_ml_outer |> plot("res") ref_ml_perf |> plot("edf") ref_ml_outer |> plot("edf") }) }) # Extrapolation---- test_that("Extrapolation and extrapolation plots work", { newdata <- 18:99 perf_extra_reg <- WH_1d_perf(y = y, wt = wt, reg = TRUE) |> predict(newdata) outer_extra_reg <- WH_1d_outer(y = y, wt = wt, reg = TRUE) |> predict(newdata) compare_fits(perf_extra_reg, outer_extra_reg, tolerance = 1e-5) perf_extra_ml <- WH_1d_perf(d, ec) |> predict(newdata) outer_extra_ml <- WH_1d_outer(d, ec) |> predict(newdata) compare_fits(perf_extra_ml, outer_extra_ml, tolerance = 1e-1) expect_no_error({ perf_extra_reg |> plot() outer_extra_reg |> plot() perf_extra_ml |> plot() outer_extra_ml |> plot() }) })