R Under development (unstable) (2024-12-15 r87442 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > ## switch for testing the following (time consuming) examples > docheck <- FALSE > > if(docheck){ + + ### tests from excluded examples + library(VineCopula) + data(daxreturns) + + ## Not run: + # simulate from a bivariate Clayton copula + set.seed(123) + simdata <- BiCopSim(300, 3, 2) + u1 <- simdata[,1] + u2 <- simdata[,2] + + # perform Kendall's goodness-of-fit test for the true copula + gof <- BiCopGofTest(u1, u2, family = 3, method = "kendall") + gof$p.value.CvM + gof$p.value.KS + + # perform Kendall's goodness-of-fit test for the Frank copula + gof <- BiCopGofTest(u1, u2, family = 5, method = "kendall") + gof$p.value.CvM + gof$p.value.KS + # End(Not run) + + + ## Not run: + # simulate from a t-copula + set.seed(123) + dat <- BiCopSim(500, 2, 0.7, 5) + + # apply the test for families 1-10 + vcgof <- BiCopVuongClarke(dat[,1], dat[,2], familyset = c(1:10)) + + # display the Vuong test scores + vcgof[1,] + # End(Not run) + + ## Not run: + # select the R-vine structure, families and parameters + RVM <- RVineStructureSelect(daxreturns[,1:5], c(1:6)) + RVM$Matrix + RVM$par + RVM$par2 + + # select the C-vine structure, families and parameters + CVM <- RVineStructureSelect(daxreturns[,1:5], c(1:6), type = "CVine") + CVM$Matrix + CVM$par + CVM$par2 + + # compare the two models based on the data + clarke <- RVineClarkeTest(daxreturns[,1:5], RVM, CVM) + clarke$statistic + clarke$statistic.Schwarz + clarke$p.value + clarke$p.value.Schwarz + # End(Not run) + + ## Not run: + # White test with asymptotic p-value + RVineGofTest(daxreturns[,1:5], RVM, B = 0) + + # ECP2 test with Cramer-von-Mises test statistic and a bootstrap with 200 replications + # for the calculation of the p-value + RVineGofTest(daxreturns[,1:5], RVM, method = "ECP2", statistic = "CvM", B = 200) + # End(Not run) + + ## Not run: + # define 5-dimensional R-vine tree structure matrix + Matrix <- c(5, 2, 3, 1, 4, + 0, 2, 3, 4, 1, + 0, 0, 3, 4, 1, + 0, 0, 0, 4, 1, + 0, 0, 0, 0, 1) + Matrix <- matrix(Matrix, 5, 5) + + # define R-vine pair-copula family matrix + family <- c(0, 1, 3, 4, 4, + 0, 0, 3, 4, 1, + 0, 0, 0, 4, 1, + 0, 0, 0, 0, 3, + 0, 0, 0, 0, 0) + family <- matrix(family, 5, 5) + + # define R-vine pair-copula parameter matrix + par <- c(0, 0.2, 0.9, 1.5, 3.9, + 0, 0, 1.1, 1.6, 0.9, + 0, 0, 0, 1.9, 0.5, + 0, 0, 0, 0, 4.8, + 0, 0, 0, 0, 0) + par <- matrix(par, 5, 5) + + # define second R-vine pair-copula parameter matrix + par2 <- matrix(0, 5, 5) + + # define RVineMatrix object + RVM <- RVineMatrix(Matrix = Matrix, family = family, par = par, par2 = par2, + names=c("V1", "V2", "V3", "V4", "V5")) + + # simulate a sample of size 300 from the R-vine copula model + set.seed(123) + simdata <- RVineSim(300, RVM) + + # compute the MLE + mle <- RVineMLE(simdata, RVM, grad = TRUE) + mle$RVM + # End(Not run) + + ## Not run: + # PIT data + pit <- RVinePIT(daxreturns[,1:5], RVM) + + par(mfrow = c(1,2)) + plot(daxreturns[,1], daxreturns[,2]) # correlated data + plot(pit[,1], pit[,2]) # i.i.d. data + + cor(daxreturns[,1:5], method = "kendall") + cor(pit, method = "kendall") + # End(Not run) + + ##TODO shorten this test, takes too long + # # Not run: + # RVM <- RVineStructureSelect(daxreturns, c(1:6), progress=TRUE) + # # End(Not run) + # + # # specify a C-vine copula model with only Clayton, Gumbel and Frank copulas + # # Not run: + # CVM <- RVineStructureSelect(daxreturns, c(3,4,5), "CVine") + # # End(Not run) + # # determine the order of the nodes in a D-vine using the package TSP + # # Not run: + # library(TSP) + # d <- dim(daxreturns)[2] + # M <- 1 - abs(TauMatrix(daxreturns)) + # hamilton <- insert_dummy(TSP(M), label = "cut") + # sol <- solve_TSP(hamilton,method = "repetitive_nn") + # order <- cut_tour(sol, "cut") + # DVM <- D2RVine(order, family = rep(0,d*(d-1)/2), par = rep(0,d*(d-1)/2)) + # RVineCopSelect(daxreturns, c(1:6), DVM$Matrix) + # End(Not run) + + ## Not run: + RVM <- RVineStructureSelect(daxreturns[,1:5], c(1:6)) + CVM <- RVineStructureSelect(daxreturns[,1:5], c(1:6), type = "CVine") + + # compare the two models based on the data + vuong <- RVineVuongTest(daxreturns[,1:5], RVM, CVM) + vuong$statistic + vuong$statistic.Schwarz + vuong$p.value + vuong$p.value.Schwarz + # End(Not run) + + } > > proc.time() user system elapsed 0.14 0.03 0.15