## switch for testing the following (time consuming) examples docheck <- FALSE if(docheck){ ### tests from excluded examples library(VineCopula) data(daxreturns) ## Not run: # simulate from a bivariate Clayton copula set.seed(123) simdata <- BiCopSim(300, 3, 2) u1 <- simdata[,1] u2 <- simdata[,2] # perform Kendall's goodness-of-fit test for the true copula gof <- BiCopGofTest(u1, u2, family = 3, method = "kendall") gof$p.value.CvM gof$p.value.KS # perform Kendall's goodness-of-fit test for the Frank copula gof <- BiCopGofTest(u1, u2, family = 5, method = "kendall") gof$p.value.CvM gof$p.value.KS # End(Not run) ## Not run: # simulate from a t-copula set.seed(123) dat <- BiCopSim(500, 2, 0.7, 5) # apply the test for families 1-10 vcgof <- BiCopVuongClarke(dat[,1], dat[,2], familyset = c(1:10)) # display the Vuong test scores vcgof[1,] # End(Not run) ## Not run: # select the R-vine structure, families and parameters RVM <- RVineStructureSelect(daxreturns[,1:5], c(1:6)) RVM$Matrix RVM$par RVM$par2 # select the C-vine structure, families and parameters CVM <- RVineStructureSelect(daxreturns[,1:5], c(1:6), type = "CVine") CVM$Matrix CVM$par CVM$par2 # compare the two models based on the data clarke <- RVineClarkeTest(daxreturns[,1:5], RVM, CVM) clarke$statistic clarke$statistic.Schwarz clarke$p.value clarke$p.value.Schwarz # End(Not run) ## Not run: # White test with asymptotic p-value RVineGofTest(daxreturns[,1:5], RVM, B = 0) # ECP2 test with Cramer-von-Mises test statistic and a bootstrap with 200 replications # for the calculation of the p-value RVineGofTest(daxreturns[,1:5], RVM, method = "ECP2", statistic = "CvM", B = 200) # End(Not run) ## Not run: # define 5-dimensional R-vine tree structure matrix Matrix <- c(5, 2, 3, 1, 4, 0, 2, 3, 4, 1, 0, 0, 3, 4, 1, 0, 0, 0, 4, 1, 0, 0, 0, 0, 1) Matrix <- matrix(Matrix, 5, 5) # define R-vine pair-copula family matrix family <- c(0, 1, 3, 4, 4, 0, 0, 3, 4, 1, 0, 0, 0, 4, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0) family <- matrix(family, 5, 5) # define R-vine pair-copula parameter matrix par <- c(0, 0.2, 0.9, 1.5, 3.9, 0, 0, 1.1, 1.6, 0.9, 0, 0, 0, 1.9, 0.5, 0, 0, 0, 0, 4.8, 0, 0, 0, 0, 0) par <- matrix(par, 5, 5) # define second R-vine pair-copula parameter matrix par2 <- matrix(0, 5, 5) # define RVineMatrix object RVM <- RVineMatrix(Matrix = Matrix, family = family, par = par, par2 = par2, names=c("V1", "V2", "V3", "V4", "V5")) # simulate a sample of size 300 from the R-vine copula model set.seed(123) simdata <- RVineSim(300, RVM) # compute the MLE mle <- RVineMLE(simdata, RVM, grad = TRUE) mle$RVM # End(Not run) ## Not run: # PIT data pit <- RVinePIT(daxreturns[,1:5], RVM) par(mfrow = c(1,2)) plot(daxreturns[,1], daxreturns[,2]) # correlated data plot(pit[,1], pit[,2]) # i.i.d. data cor(daxreturns[,1:5], method = "kendall") cor(pit, method = "kendall") # End(Not run) ##TODO shorten this test, takes too long # # Not run: # RVM <- RVineStructureSelect(daxreturns, c(1:6), progress=TRUE) # # End(Not run) # # # specify a C-vine copula model with only Clayton, Gumbel and Frank copulas # # Not run: # CVM <- RVineStructureSelect(daxreturns, c(3,4,5), "CVine") # # End(Not run) # # determine the order of the nodes in a D-vine using the package TSP # # Not run: # library(TSP) # d <- dim(daxreturns)[2] # M <- 1 - abs(TauMatrix(daxreturns)) # hamilton <- insert_dummy(TSP(M), label = "cut") # sol <- solve_TSP(hamilton,method = "repetitive_nn") # order <- cut_tour(sol, "cut") # DVM <- D2RVine(order, family = rep(0,d*(d-1)/2), par = rep(0,d*(d-1)/2)) # RVineCopSelect(daxreturns, c(1:6), DVM$Matrix) # End(Not run) ## Not run: RVM <- RVineStructureSelect(daxreturns[,1:5], c(1:6)) CVM <- RVineStructureSelect(daxreturns[,1:5], c(1:6), type = "CVine") # compare the two models based on the data vuong <- RVineVuongTest(daxreturns[,1:5], RVM, CVM) vuong$statistic vuong$statistic.Schwarz vuong$p.value vuong$p.value.Schwarz # End(Not run) }