# Test cases for function 'VCAinference' # # Author: André Schützenmeister # # Note: Confidence Intervals for all variance components but total are compared # to results of SAS 9.2 PROC MIXED (method=Type1, cl options, 4 decimal digits). # CI-limits for total VC are compared to Roche Diagnostics SAS Intranet Module VCA # results (if included in the testcase).used within the Satterthwaite approximation # For balanced data the Fisher-Information matrix used as approximation of the # covariance-matrix of VCs is identical to the implemented covariance matrix of # VCs (see 'anovaVCA', 'anovaVCAnub', 'VCAinference' for details). # ######################################################################################################################## cat("\n\n***************************************************************************") cat("\nVariance Component Analysis (VCA) - test cases for function 'VCAinference'.") cat("\n***************************************************************************\n\n") # load data and generate datasets where negative VC estimates occur data(dataEP05A2_1) data1 <- dataEP05A2_1 set.seed(1) data1$y <- data1$y + rnorm(80,,5) data(dataEP05A2_2) data2 <- dataEP05A2_2 set.seed(2) data2$y <- data2$y + rnorm(80,,8) data(dataEP05A2_3) data3 <- dataEP05A2_3 set.seed(3) data3$y <- data3$y + rnorm(80,,10) data(dataEP05A3_MS_1) data(dataEP05A3_MS_2) data(dataEP05A3_MS_3) # check EP05-A2 20/2/2 output for balanced data (total variance, error variance) TF001.VCAinference.constrained_CIs.balanced <- function() { fit1 <- anovaVCA(y~day/run, Data=dataEP05A2_1, NegVC=TRUE, MME=TRUE) INF1 <- VCAinference(fit1, VarVC=TRUE, excludeNeg=FALSE, constrainCI=TRUE) checkEquals(round(as.numeric(INF1$ConfInt$VC$TwoSided[, "LCL"]), 4), c(2.4156, 0, 0, 1.3167)) # CI VC two-sided lower limits checkEquals(round(as.numeric(INF1$ConfInt$VC$TwoSided[, "UCL"]), 4), c(4.7767, 1.0322, 2.8455, 3.1980)) # CI VC two-sided upper limits fit2 <- anovaVCA(y~day/run, Data=dataEP05A2_2, NegVC=TRUE, MME=TRUE) INF2 <- VCAinference(fit2, VarVC=TRUE, excludeNeg=FALSE, constrainCI=TRUE) checkEquals(round(as.numeric(INF2$ConfInt$VC$TwoSided[, "LCL"]), 4), c(5.9669, 0, 0, 2.5077)) # CI VC two-sided lower limits checkEquals(round(as.numeric(INF2$ConfInt$VC$TwoSided[, "UCL"]), 4), c(12.7046, 4.8921, 5.8428, 6.0906)) # CI VC two-sided upper limits fit3 <- anovaVCA(y~day/run, Data=dataEP05A2_3, NegVC=TRUE, MME=TRUE) INF3 <- VCAinference(fit3, VarVC=TRUE, excludeNeg=FALSE, constrainCI=TRUE) checkEquals(round(as.numeric(INF3$ConfInt$VC$TwoSided[, "LCL"]), 4), c(24.8957, 0, 0, 10.9764)) # CI VC two-sided lower limits checkEquals(round(as.numeric(INF3$ConfInt$VC$TwoSided[, "UCL"]), 4), c(54.8935, 25.6818, 17.0897, 26.6590)) # CI VC two-sided upper limits } TF002.VCAinference.unconstrained_CIs.balanced <- function() { fit1 <- anovaVCA(y~day/run, Data=dataEP05A2_1, NegVC=TRUE, MME=TRUE) INF1 <- VCAinference(fit1, VarVC=TRUE, excludeNeg=FALSE, constrainCI=FALSE) checkEquals(round(as.numeric(INF1$ConfInt$VC$TwoSided[, "LCL"]), 4), c(2.4156, -1.0300, -0.1565, 1.3167)) # CI VC two-sided lower limits checkEquals(round(as.numeric(INF1$ConfInt$VC$TwoSided[, "UCL"]), 4), c(4.7767, 1.0322, 2.8455, 3.1980)) # CI VC two-sided upper limits fit2 <- anovaVCA(y~day/run, Data=dataEP05A2_2, NegVC=TRUE, MME=TRUE) INF2 <- VCAinference(fit2, VarVC=TRUE, excludeNeg=FALSE, constrainCI=FALSE) checkEquals(round(as.numeric(INF2$ConfInt$VC$TwoSided[, "LCL"]), 4), c(5.9669, -1.1845, -0.1907, 2.5077)) # CI VC two-sided lower limits checkEquals(round(as.numeric(INF2$ConfInt$VC$TwoSided[, "UCL"]), 4), c(12.7046, 4.8921, 5.8428, 6.0906)) # CI VC two-sided upper limits fit3 <- anovaVCA(y~day/run, Data=dataEP05A2_3, NegVC=TRUE, MME=TRUE) INF3 <- VCAinference(fit3, VarVC=TRUE, excludeNeg=FALSE, constrainCI=FALSE) checkEquals(round(as.numeric(INF3$ConfInt$VC$TwoSided[, "LCL"]), 4), c(24.8957, -1.2196, -3.0273, 10.9764)) # CI VC two-sided lower limits checkEquals(round(as.numeric(INF3$ConfInt$VC$TwoSided[, "UCL"]), 4), c(54.8935, 25.6818, 17.0897, 26.6590)) # CI VC two-sided upper limits } TF003.VCAinference.negative_VC.balanced <- function() { # constrainCI has to be TRUE whenever any VC-estimates were set to 0 fit1 <- anovaVCA(y~day/run, data1, MME=TRUE) INF1 <- VCAinference(fit1, VarVC=TRUE, constrainCI=FALSE) checkEquals(round(as.numeric(INF1$ConfInt$VC$TwoSided[, "LCL"]), 4), c( 24.2184, NA, 0.0000, 14.4422)) # if CIs for originally negative VC estimates should not be excluded, always constrain them to zero if VC estimates were constrained fit2 <- anovaVCA(y~day/run, data1, MME=TRUE) INF2 <- VCAinference(fit2, VarVC=TRUE, excludeNeg=FALSE) checkEquals(round(as.numeric(INF2$ConfInt$VC$TwoSided[, "LCL"]), 4), c(24.2184, 0.0000, 0.0000, 14.4422)) # CIs of results with negative VC estimates, which are reported unconstrained (NegVC=TRUE in anovaVCA), cannot be constrained # they can only be excluded (Default) fit3 <- anovaVCA(y~day/run, data1, NegVC=TRUE, MME=TRUE) INF3 <- VCAinference(fit3, VarVC=TRUE, excludeNeg=TRUE) checkEquals(round(as.numeric(INF3$ConfInt$VC$TwoSided[, "LCL"]), 4), c(19.2231, NA, -3.0623, 14.4422)) # or not fit4 <- anovaVCA(y~day/run, data1, NegVC=TRUE, MME=TRUE) INF4 <- VCAinference(fit4, VarVC=TRUE, excludeNeg=FALSE) checkEquals(round(as.numeric(INF4$ConfInt$VC$TwoSided[, "LCL"]), 4), c(19.2231, -14.1191, -3.0623, 14.4422)) } # check EP05-A3 3/5/5 Multi-Site output for balanced data (total variance, error variance) TF004.VCAinference.VC_CI.balanced <- function() { fit1 <- anovaVCA(y~site/day, Data=dataEP05A3_MS_1, NegVC=TRUE, MME=TRUE) INF1 <- VCAinference(fit1, VarVC=TRUE, excludeNeg=FALSE, constrainCI=FALSE) checkEquals(round(as.numeric(INF1$ConfInt$VC$TwoSided[, "LCL"]), 4), c(2.0437, -1.2939, -0.3148, 1.6365)) # CI VC two-sided lower limits checkEquals(round(as.numeric(INF1$ConfInt$VC$TwoSided[, "UCL"]), 4), c(8.1959, 3.3287, 1.0065, 3.3674)) # CI VC two-sided upper limits fit2 <- anovaVCA(y~site/day, Data=dataEP05A3_MS_2, NegVC=TRUE, MME=TRUE) INF2 <- VCAinference(fit2, VarVC=TRUE, excludeNeg=FALSE, constrainCI=FALSE) # total not tested checkEquals(round(as.numeric(INF2$ConfInt$VC$TwoSided[-1, "LCL"]), 4), c(-1.6806, -0.4157, 2.6842)) # CI VC two-sided lower limits checkEquals(round(as.numeric(INF2$ConfInt$VC$TwoSided[-1, "UCL"]), 4), c( 3.7022, 2.4723, 5.5231)) # CI VC two-sided upper limits fit3 <- anovaVCA(y~site/day, Data=dataEP05A3_MS_3, NegVC=TRUE, MME=TRUE) INF3 <- VCAinference(fit3, VarVC=TRUE, excludeNeg=FALSE, constrainCI=FALSE) # total not tested checkEquals(round(as.numeric(INF3$ConfInt$VC$TwoSided[-1, "LCL"]), 4), c(-20.5980, -1.4056, 10.8222)) # CI VC two-sided lower limits checkEquals(round(as.numeric(INF3$ConfInt$VC$TwoSided[-1, "UCL"]), 4), c( 56.5796, 12.2530, 22.2685)) # CI VC two-sided upper limits } # test one-sided CIs against values obtained via Excel-based PrecPerf Reports TF005.VCAinference.WinCAEv_PrecPerf.SD_CI <- function() { data_1 <- data.frame(day=c(1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21), run=c(1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2), y=c(106.2, 106.6, 106.2, 106.1, 106.8, 106.9, 107.1, 107, 107.5, 107.5, 107.2, 107, 107.8, 107.5, 106.9, 106.8, 107.1, 106.9, 106.1, 105.7, 106.5, 106.3, 105.8, 105.8, 106, 106, 105.4, 105.4, 105.4, 105.3, 104.6, 104.5, 105.2, 105.3, 104.9, 104.8, 105.1, 105.1, 104.3, 104.3, 104.5, 104.7, 104.1, 104, 104.1, 104.1, 103.4, 103.3, 103.3, 103.2, 102.6, 102.6, 103, 103.1, 102.5, 102.6, 102.9, 102.9, 102.3, 101.9, 102.5, 102.6, 102.2, 102.2, 102.5, 102.5, 102.3, 102.1, 105.5, 105.6, 105.3, 105.5, 106.5, 106.5, 106.5, 106.5, 108.1, 108.1, 108.3, 108.5, 104.9, 105.7, 105.2, 105.7)) res1 <- anovaVCA(y~day/run, data_1) inf1 <- VCAinference(res1) checkEquals(round(as.numeric(inf1$ConfInt$SD$OneSided["total", 2:3]), 8), c(1.45561309, 2.43889695)) checkEquals(round(as.numeric(inf1$ConfInt$SD$OneSided["error", 2:3]), 8), c(0.12750817, 0.18324098)) } TF006.VCAinference.WinCAEv_PrecPerf.SD_CI <- function() { data_2 <-data.frame(day=c(1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21), run=c(1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2), y=c(107.7,107.4,107.3,107.5,105.7,105.8,105,104.9,104.5,105,104.9,104.8,105.4,105.3,105.2,105.3,105.6,105.5,104.9,104.9,105,104.7,104.1,104.1,104.6,104.7,104,104,104.3,104.5,104.1,104,104.5,104.3,103.8,103.8,104.1,104.3,103.9,103.7,104.1,104.1,103.3,103.2,103.5,103.5,102.6,102.5,102.7,102.8,102,101.8,102.4,102.2,101.7,101.7,102,102.1,101.4,101.3,104.8,105,104.2,104.1,104.1,104.2,103.4,103.6,104.5,104.7,104.5,104.2,105.2,105.3,104.6,104.6,105.2,105.1,104.6,104.4,103.9,103.8,103.9,103.7)) res2 <- anovaVCA(y~day/run, data_2) inf2 <- VCAinference(res2) checkEquals(round(as.numeric(inf2$ConfInt$SD$OneSided["total", 2:3]), 8), c(1.05907281, 1.74636429)) checkEquals(round(as.numeric(inf2$ConfInt$SD$OneSided["error", 2:3]), 8), c(0.10075071, 0.14478805)) } ### check confidence intervals of some crossed-nested designs (balanced and unbalanced) # compare numerical equivalence of confidence intervals of VCs to SAS PROC MIXED results # using following SAS-code: # # proc mixed data=sample method=type1 asycov cl; # class lot device day run; # model y=; # random lot device lot*device*day lot*device*day*run; # run; TF007.VCAinference.CrossedNested.VC_CI.balanced <- function() { data(VCAdata1) sample1 <- VCAdata1[which(VCAdata1$sample==1),] sample1$device <- gl(3,28,252) # add device variable set.seed(505) sample1$y <- sample1$y + rep(rep(rnorm(3,,.25), c(28,28,28)),3) # add error component for device # write.table(sample1UB, file="sample1UB.txt", quote=FALSE, row.names=FALSE, col.names=TRUE, sep="\t") # export data, import to SAS and apply SAS-code given above res1 <- anovaVCA(y~lot+device+(lot:device:day)/run, sample1) inf1 <- VCAinference(res1, VarVC=TRUE, constrainCI=FALSE, ci.method="sas") CIs <- inf1$ConfInt$VC$TwoSided CIs <- as.matrix(CIs[,-1]) colnames(CIs) <- NULL checkEquals(round(CIs["lot",], 5), c(-0.01847, 0.04951)) # round to precision of SAS PROC MIXED output checkEquals(round(CIs["device",], 5), c(-0.06322, 0.1875)) checkEquals(round(CIs["lot:device:day",], 5), c(-0.00399, 0.02910)) checkEquals(round(CIs["lot:device:day:run",], 5), c( 0.03282, 0.06865)) checkEquals(round(CIs["error",], 6), c( 0.000913, 0.001500)) } # unbalanced data is obtained using following strategy: # # data sample1UB; # set sample1; # obs = _N_; # if obs in (11,25,26,41,50) then delete; # run; # # and then running the PROC MIXED code shown above. TF008.VCAinference.CrossedNested.VC_CI.unbalanced <- function() { data(VCAdata1) sample1 <- VCAdata1[which(VCAdata1$sample==1),] sample1$device <- gl(3,28,252) # add device variable set.seed(505) sample1$y <- sample1$y + rep(rep(rnorm(3,,.25), c(28,28,28)),3) # add error component for device sample1 <- sample1[-c(11,25,26,41,50),] # write.table(sample1UB, file="sample1UB.txt", quote=FALSE, row.names=FALSE, col.names=TRUE, sep="\t") # export data, import to SAS and apply SAS-code given above res1 <- anovaVCA(y~lot+device+(lot:device:day)/run, sample1) inf1 <- VCAinference(res1, VarVC=TRUE, constrainCI=FALSE, ci.method="sas") CIs <- inf1$ConfInt$VC$TwoSided CIs <- as.matrix(CIs[,-1]) colnames(CIs) <- NULL cat("\n\nSAS PROC MIXED uses the inverse of the Fisher-Information Matrix as approximation of Covariance-Matrix of Variance Components.") cat("\nThis is equal to the one obtained via ANOVA-approach stated in \"Variance Components\" (Searle et al. 1991) in case") cat("\nof balanced designs, otherwise Var(VC) of both results may differ:\n\n") CImat <- matrix(NA, ncol=9, nrow=5) colnames(CImat) <- c("SAS_Est", "R_Est", "SAS_LCL", "R_LCL", "SAS_UCL", "R_UCL", "Est_Diff", "LCL_Diff", "UCL_Diff") rownames(CImat) <- rownames(CIs)[2:6] CImat[,1] <- c(0.01377, 0.06190, 0.01235, 0.05125, 0.001180) CImat[,2] <- round(res1$aov.tab[-1, "VC"], c(5,5,5,5,6)) CImat[,3] <- c(-0.01375, -0.06234, -0.00418, 0.03311, 0.000932) CImat[,4] <- round(CIs[2:6, 1], c(5,5,5,5,6)) CImat[,5] <- c(0.04128, 0.1861, 0.02887, 0.06940, 0.001543) CImat[,6] <- round(CIs[2:6, 2], c(5,4,5,5,6)) CImat[,7] <- CImat[,"SAS_Est"] - CImat[,"R_Est"] CImat[,8] <- CImat[,"SAS_LCL"] - CImat[,"R_LCL"] CImat[,9] <- CImat[,"SAS_UCL"] - CImat[,"R_UCL"] checkEquals(round(CIs["error",], 6), c( 0.000932, 0.001543)) print(CImat) } TF009.VCAinference.CrossedNested.VC_CI.balanced <- function() { data(VCAdata1) sample2 <- VCAdata1[which(VCAdata1$sample==2),] sample2$device <- gl(3,28,252) # add device variable set.seed(511) sample2$y <- sample2$y + rep(rep(rnorm(3,,.25), c(28,28,28)),3) # add error component for device # write.table(sample1UB, file="sample1UB.txt", quote=FALSE, row.names=FALSE, col.names=TRUE, sep="\t") # export data, import to SAS and apply SAS-code given above res2 <- anovaVCA(y~lot+device+(lot:device:day)/run, sample2) inf2 <- VCAinference(res2, VarVC=TRUE, constrainCI=FALSE, ci.method="sas") CIs <- inf2$ConfInt$VC$TwoSided CIs <- as.matrix(CIs[,-1]) colnames(CIs) <- NULL checkEquals(round(CIs["lot",], 4), c(-0.2240, 0.6220)) # round to precision of SAS PROC MIXED output checkEquals(round(CIs["device",], 4), c(-0.4456, 1.3055)) checkEquals(round(CIs["lot:device:day",], 4), c( 0.1857, 0.4437)) checkEquals(round(CIs["lot:device:day:run",], 5), c( 0.02677, 0.08087)) checkEquals(round(CIs["error",], 5), c( 0.03495, 0.05738)) } TF010.VCAinference.CrossedNested.VC_CI.unbalanced <- function() { data(VCAdata1) sample2 <- VCAdata1[which(VCAdata1$sample==2),] sample2$device <- gl(3,28,252) # add device variable set.seed(511) sample2$y <- sample2$y + rep(rep(rnorm(3,,.25), c(28,28,28)),3) # add error component for device sample2 <- sample2[-c(1,5,36,39,51),] # write.table(sample1UB, file="sample1UB.txt", quote=FALSE, row.names=FALSE, col.names=TRUE, sep="\t") # export data, import to SAS and apply SAS-code given above res2 <- anovaVCA(y~lot+device+(lot:device:day)/run, sample2) inf2 <- VCAinference(res2, VarVC=TRUE, constrainCI=FALSE, ci.method="sas") CIs <- inf2$ConfInt$VC$TwoSided CIs <- as.matrix(CIs[,-1]) colnames(CIs) <- NULL cat("\n\nSAS PROC MIXED uses the inverse of the Fisher-Information Matrix as approximation of Covariance-Matrix of Variance Components.") cat("\nThis is equal to the one obtained via ANOVA-approach stated in \"Variance Components\" (Searle et al. 1991) in case") cat("\nof balanced designs, otherwise Var(VC) of both results may differ:\n\n") CImat <- matrix(NA, ncol=9, nrow=5) colnames(CImat) <- c("SAS_Est", "R_Est", "SAS_LCL", "R_LCL", "SAS_UCL", "R_UCL", "Est_Diff", "LCL_Diff", "UCL_Diff") rownames(CImat) <- rownames(CIs)[2:6] CImat[,1] <- c(0.1892, 0.4359, 0.3178, 0.05724, 0.04108) CImat[,2] <- round(res2$aov.tab[-1, "VC"], c(4,4,4,5,5)) CImat[,3] <- c(-0.1909, -0.4608, 0.1860, 0.02931, 0.03241) CImat[,4] <- round(CIs[2:6, 1],c(4,4,4,5,5)) CImat[,5] <- c(0.5692, 1.3326, 0.4496, 0.08517, 0.05376) CImat[,6] <- round(CIs[2:6, 2], c(4,4,4,5,5)) CImat[,7] <- CImat[,"SAS_Est"] - CImat[,"R_Est"] CImat[,8] <- CImat[,"SAS_LCL"] - CImat[,"R_LCL"] CImat[,9] <- CImat[,"SAS_UCL"] - CImat[,"R_UCL"] checkEquals(round(CIs["error",], 5), c( 0.03241, 0.05376)) print(CImat) } TF011.VCAinference.CrossedNested.VC_CI.balanced <- function() { data(VCAdata1) sample3 <- VCAdata1[which(VCAdata1$sample==3),] sample3$device <- gl(3,28,252) # add device variable set.seed(519) sample3$y <- sample3$y + rep(rep(rnorm(3,,.25), c(28,28,28)),3) # add error component for device # write.table(sample1UB, file="sample1UB.txt", quote=FALSE, row.names=FALSE, col.names=TRUE, sep="\t") # export data, import to SAS and apply SAS-code given above res3 <- anovaVCA(y~lot+device+(lot:device:day)/run, sample3, NegVC=TRUE) inf3 <- VCAinference(res3, VarVC=TRUE, constrainCI=FALSE, excludeNeg=FALSE, ci.method="sas") CIs <- inf3$ConfInt$VC$TwoSided CIs <- as.matrix(CIs[,-1]) colnames(CIs) <- NULL checkEquals(round(CIs["lot",], c(5,6)), c(-0.00168, 0.000049)) # round to precision of SAS PROC MIXED output checkEquals(round(CIs["device",], c(5,4)), c(-0.05672, 0.1700)) checkEquals(round(CIs["lot:device:day",], c(5,6)), c(-0.03297, 0.001022)) checkEquals(round(CIs["lot:device:day:run",], c(5,4)), c( 0.05327, 0.1106)) checkEquals(round(CIs["error",], c(6,6)), c( 0.000263, 0.000432)) } TF012.VCAinference.CrossedNested.VC_CI.unbalanced <- function() { data(VCAdata1) sample3 <- VCAdata1[which(VCAdata1$sample==3),] sample3$device <- gl(3,28,252) # add device variable set.seed(519) sample3$y <- sample3$y + rep(rep(rnorm(3,,.25), c(28,28,28)),3) # add error component for device sample3 <- sample3[-c(9,10,11,29,30),] # write.table(sample1UB, file="sample1UB.txt", quote=FALSE, row.names=FALSE, col.names=TRUE, sep="\t") # export data, import to SAS and apply SAS-code given above res3 <- anovaVCA(y~lot+device+(lot:device:day)/run, sample3, NegVC=TRUE) inf3 <- VCAinference(res3, VarVC=TRUE, constrainCI=FALSE, excludeNeg=FALSE, ci.method="sas") CIs <- inf3$ConfInt$VC$TwoSided CIs <- as.matrix(CIs[,-1]) colnames(CIs) <- NULL cat("\n\nSAS PROC MIXED uses the inverse of the Fisher-Information Matrix as approximation of Covariance-Matrix of Variance Components.") cat("\nThis is equal to the one obtained via ANOVA-approach stated in \"Variance Components\" (Searle et al. 1991) in case") cat("\nof balanced designs, otherwise Var(VC) of both results may differ:\n\n") CImat <- matrix(NA, ncol=9, nrow=5) colnames(CImat) <- c("SAS_Est", "R_Est", "SAS_LCL", "R_LCL", "SAS_UCL", "R_UCL", "Est_Diff", "LCL_Diff", "UCL_Diff") rownames(CImat) <- rownames(CIs)[2:6] CImat[,1] <- c(-0.00085, 0.05804, -0.01741, 0.08400, 0.000337) CImat[,2] <- round(res3$aov.tab[-1, "VC"], c(5,5,5,5,6)) CImat[,3] <- c(-0.00154, -0.05762, -0.03482, 0.05394, 0.000266) CImat[,4] <- round(CIs[2:6, 1],c(5,5,5,5,6)) CImat[,5] <- c(-0.00017, 0.1737, -0.00000325, 0.1141, 0.000440) CImat[,6] <- round(CIs[2:6, 2], c(5,4,8,4,6)) CImat[,7] <- CImat[,"SAS_Est"] - CImat[,"R_Est"] CImat[,8] <- CImat[,"SAS_LCL"] - CImat[,"R_LCL"] CImat[,9] <- CImat[,"SAS_UCL"] - CImat[,"R_UCL"] checkEquals(round(CIs["error",], 6), c( 0.000266, 0.000440)) print(CImat) } # Test Satterthwaite methodology for confidence intervals of all variance components. This is different from the SAS PROC MIXED # methodology, whenever Type1 estimation method is chosen, which is tested in all other test functions above. Here, all VC CIs # are constructed using the Chi-Squared distribution and DFs are approximated according to Satterthwaite. # # For balanced designs, CIs are equal of those constructed by SAS PROC MIXED with method=REML. In this setting, CIs are constructed # using the "Satterthwaite methodology". TF013.anovaVCA.Satt_methodology_for_CI.balanced <- function() { data(dataEP05A2_2) res <- anovaVCA(y~day/run, dataEP05A2_2) inf <- VCAinference(res, VarVC=TRUE, ci.method="satterthwaite") checkEquals(round(as.numeric(inf$ConfInt$VC$TwoSided[-1, "LCL"]), 4), c(0.5835, 1.2203, 2.5077)) checkEquals(round(as.numeric(inf$ConfInt$VC$TwoSided[-1, "UCL"]), 4), c(28.5302, 12.1410, 6.0906)) } TF014.anovaVCA.Satt_methodology_for_CI.balanced <- function() { data(dataEP05A2_3) res <- anovaVCA(y~day/run, dataEP05A2_3) inf <- VCAinference(res, VarVC=TRUE, ci.method="satterthwaite") checkEquals(round(as.numeric(inf$ConfInt$VC$TwoSided[-1, "LCL"]), 4), c(5.1779, 2.4638, 10.9764)) checkEquals(round(as.numeric(inf$ConfInt$VC$TwoSided[-1, "UCL"]), 4), c(55.8104, 64.3402, 26.6590)) } # now checking mixed models, where day is fixed TF015.anovaMM.Satt_methodology.balanced <- function() { data(dataEP05A2_2) res <- anovaMM(y~day/(run), dataEP05A2_2) inf <- VCAinference(res, VarVC=TRUE, ci.method="satterthwaite") checkEquals(round(as.numeric(inf$ConfInt$VC$TwoSided[-1, "LCL"]), 4), c(1.2203, 2.5077)) checkEquals(round(as.numeric(inf$ConfInt$VC$TwoSided[-1, "UCL"]), 4), c(12.1410, 6.0906)) } TF016.anovaMM.Satt_methodology.balanced <- function() { data(dataEP05A2_3) res <- anovaMM(y~day/(run), dataEP05A2_3) inf <- VCAinference(res, VarVC=TRUE, ci.method="satterthwaite") checkEquals(round(as.numeric(inf$ConfInt$VC$TwoSided[-1, "LCL"]), 4), c(2.4638, 10.9764)) checkEquals(round(as.numeric(inf$ConfInt$VC$TwoSided[-1, "UCL"]), 4), c(64.3402, 26.6590)) } # This test checks whether point estimates exceeding the bounds of a confidence interval # are correctly set to NA. TF017.anovaVCA.Est_outsided_CI <- function() { data(ReproData1) # input data fit <- anovaVCA(value~Site/Day/Run, ReproData1) inf <- tryCatch(VCAinference(fit, ci.method="satterthwaite"), # warning should be issued warning=function(w) w ) checkTrue(is(inf, "warning")) inf <- VCAinference(fit, ci.method="satterthwaite") infVC <- print(inf, what="VC") checkTrue(is.na(infVC["Site:Day:Run", "CI LCL"])) checkTrue(is.na(infVC["Site:Day:Run", "CI UCL"])) checkTrue(is.na(infVC["Site:Day:Run", "One-Sided LCL"])) } # check EP05-A2 20/2/2 output for balanced data (total variance, error variance) TF018.VCAinference.constrained_CIs.balanced <- function() { fit1 <- remlVCA(y~day/run, Data=dataEP05A2_1) INF1 <- VCAinference(fit1, VarVC=TRUE, excludeNeg=FALSE, constrainCI=TRUE) checkEquals(round(as.numeric(INF1$ConfInt$VC$TwoSided[, "LCL"]), 4), c(2.4156, 0, 0, 1.3167)) # CI VC two-sided lower limits checkEquals(round(as.numeric(INF1$ConfInt$VC$TwoSided[, "UCL"]), 4), c(4.7767, 1.0322, 2.8455, 3.1980)) # CI VC two-sided upper limits fit2 <- remlVCA(y~day/run, Data=dataEP05A2_2) INF2 <- VCAinference(fit2, VarVC=TRUE, excludeNeg=FALSE, constrainCI=TRUE) checkEquals(round(as.numeric(INF2$ConfInt$VC$TwoSided[, "LCL"]), 4), c(5.9669, 0, 0, 2.5077)) # CI VC two-sided lower limits checkEquals(round(as.numeric(INF2$ConfInt$VC$TwoSided[, "UCL"]), 4), c(12.7046, 4.8921, 5.8428, 6.0906)) # CI VC two-sided upper limits fit3 <- remlVCA(y~day/run, Data=dataEP05A2_3) INF3 <- VCAinference(fit3, VarVC=TRUE, excludeNeg=FALSE, constrainCI=TRUE) checkEquals(round(as.numeric(INF3$ConfInt$VC$TwoSided[, "LCL"]), 4), c(24.8957, 0, 0, 10.9764)) # CI VC two-sided lower limits checkEquals(round(as.numeric(INF3$ConfInt$VC$TwoSided[, "UCL"]), 4), c(54.8935, 25.6818, 17.0897, 26.6590)) # CI VC two-sided upper limits } TF019.VCAinference.unconstrained_CIs.balanced <- function() { fit1 <- remlVCA(y~day/run, Data=dataEP05A2_1) INF1 <- VCAinference(fit1, excludeNeg=FALSE, constrainCI=FALSE) checkEquals(round(as.numeric(INF1$ConfInt$VC$TwoSided[, "LCL"]), 4), c(2.4156, -1.0300, -0.1565, 1.3167)) # CI VC two-sided lower limits checkEquals(round(as.numeric(INF1$ConfInt$VC$TwoSided[, "UCL"]), 4), c(4.7767, 1.0322, 2.8455, 3.1980)) # CI VC two-sided upper limits fit3 <- remlVCA(y~day/run, Data=dataEP05A2_3) INF3 <- VCAinference(fit3, VarVC=TRUE, excludeNeg=FALSE, constrainCI=FALSE) checkEquals(round(as.numeric(INF3$ConfInt$VC$TwoSided[, "LCL"]), 4), c(24.8957, -1.2196, -3.0273, 10.9764)) # CI VC two-sided lower limits checkEquals(round(as.numeric(INF3$ConfInt$VC$TwoSided[, "UCL"]), 4), c(54.8935, 25.6818, 17.0897, 26.6590)) # CI VC two-sided upper limits } TF020.VCAinference.balanced.REML.satterthwaite <- function() { # constrainCI has to be TRUE whenever any VC-estimates were set to 0 fit1 <- remlVCA(y~day/run, data1) INF1 <- VCAinference(fit1, ci.method="satt") # need Satterthwaite here to have SAS PROC MIXED reference results checkEquals(round(as.numeric(INF1$ConfInt$VC$TwoSided[, "LCL"]), 2), c( 19.64, NA, 1.51, 14.44)) checkEquals(round(as.numeric(INF1$ConfInt$VC$TwoSided[, "UCL"]), 2), c( 37.24, NA, 89.63, 35.08)) fit2 <- remlVCA(y~day/run, data2) INF2 <- VCAinference(fit2, ci.method="satt") checkEquals(round(as.numeric(INF2$ConfInt$VC$TwoSided[, "LCL"]), 4), c( 63.1044 , NA, NA, 63.1044 )) checkEquals(round(as.numeric(INF2$ConfInt$VC$TwoSided[, "UCL"]), 4), c( 118.2015, NA, NA, 118.2015)) } # check EP05-A3 3/5/5 Multi-Site output for balanced data (total variance, error variance) TF021.VCAinference.VC_CI.balanced.REML <- function() { fit1 <- remlVCA(y~site/day, Data=dataEP05A3_MS_1) INF1 <- VCAinference(fit1, VarVC=TRUE, excludeNeg=FALSE, constrainCI=FALSE) checkEquals(round(as.numeric(INF1$ConfInt$VC$TwoSided[, "LCL"]), 4), c(2.0437, -1.2939, -0.3148, 1.6365)) # CI VC two-sided lower limits checkEquals(round(as.numeric(INF1$ConfInt$VC$TwoSided[, "UCL"]), 4), c(8.1959, 3.3287, 1.0065, 3.3674)) # CI VC two-sided upper limits fit2 <- remlVCA(y~site/day, Data=dataEP05A3_MS_2) INF2 <- VCAinference(fit2, VarVC=TRUE, excludeNeg=FALSE, constrainCI=FALSE) # total not tested checkEquals(round(as.numeric(INF2$ConfInt$VC$TwoSided[-1, "LCL"]), 4), c(-1.6806, -0.4157, 2.6842)) # CI VC two-sided lower limits checkEquals(round(as.numeric(INF2$ConfInt$VC$TwoSided[-1, "UCL"]), 4), c( 3.7022, 2.4723, 5.5231)) # CI VC two-sided upper limits fit3 <- remlVCA(y~site/day, Data=dataEP05A3_MS_3) INF3 <- VCAinference(fit3, VarVC=TRUE, excludeNeg=FALSE, constrainCI=FALSE) # total not tested checkEquals(round(as.numeric(INF3$ConfInt$VC$TwoSided[-1, "LCL"]), 4), c(-20.5980, -1.4056, 10.8222)) # CI VC two-sided lower limits checkEquals(round(as.numeric(INF3$ConfInt$VC$TwoSided[-1, "UCL"]), 4), c( 56.5796, 12.2530, 22.2685)) # CI VC two-sided upper limits } # check test case collection against SAS PROC MIXED method=type1 results noTF <- 22 # number of next test function ########## create unit-test functions for SAS-reference data of the real world dataset # All leading and trailing zeros are removed as well as all non-digits (decimal point, "e-" in exponential form). # Remaining digits are counted and returned as number of signficant digits. Nsignif <- function(x){ return( nchar(gsub("0+$", "", gsub("^0+", "", sub("e-..$", "", sub("\\.", "", x))))) )} # determine the number of significant digits TestPrecision <- 1e-12 data(realData) ### note, "tc.path" defined in RunAllTests.R SASrefModel1 <- read.delim(paste(tc.path, "SASresultsRealData_Model1_by_PID_Lot.txt", sep="/"), header=TRUE) by_PID_Lot <- realData[,c("PID", "lot")] by_PID_Lot <- unique(by_PID_Lot) by_PID_Lot$PID <- as.character(by_PID_Lot$PID) by_PID_Lot$lot <- as.character(by_PID_Lot$lot) # Function performs tests for each combination of PID and lot in the real-world dataset # applying model1: model1 <- y~calibration/day/run generic.test.function <- function(Data, prec=NULL) { PID <- Data$PID[1] Lot <- Data$lot[1] cat("\n>>> REAL-DATA MODEL 1: Check against SAS PROC MIXED VCA reference results for PID =",PID, " and Lot =", Lot ) cat("\n\nEquivalence of analysis results tested for:\n") cat("\n\t-all variance component (VC) estimates") cat("\n\t-confidence interval of error VC (LCL, UCL)") if(PID == 5 && Lot == 3 || PID == 3 && Lot == 1) { cat("\n\nDue to numerical reasons of representing floating point numbers as approximations,") cat("\ni.e. 0.50125 represented as 0.512499999..., this test-case has larger precision value (e-03).") prec <- 1e-03 } cat("\n\nnumerical tolerance:", prec, "(R-results element-wise rounded to the number of significant digits of SAS PROC MIXED results)\n") SASresult <- SASrefModel1[which(SASrefModel1$PID == PID & SASrefModel1$lot == Lot),] Rresult <- anovaVCA(model1, Data, NegVC=TRUE) RinfRes <- VCAinference(Rresult, VarVC=TRUE, constrainCI=FALSE)$ConfInt$VC$TwoSided if(as.integer(as.character(PID)) == 2 && as.integer(as.character(Lot)) == 3) { cat("\n\nUse numeric precision of 1e-03 now!\n\n") prec <- 1e-03 cat("R-Results:\n") print(Rresult) cat("\n\nSAS-Results:\n") print(SASresult) cat("\n\n") } nr <- nrow(Rresult$aov.tab) # actually check SAS- and R-results for(i in 2:nr) { checkEquals(signif(Rresult$aov.tab[i, "VC"], Nsignif(SASresult[i-1, "Estimate"])), SASresult[i-1, "Estimate"], # check equality of all VC-estimates tolerance=prec) if(i == 5) # also check CI-limits of error-VC { checkEquals(signif(RinfRes[i, "LCL"], Nsignif(SASresult[i-1, "Lower"])), SASresult[i-1, "Lower"], tolerance=prec) checkEquals(signif(RinfRes[i, "UCL"], Nsignif(SASresult[i-1, "Upper"])), SASresult[i-1, "Upper"], tolerance=prec) } } cat("\n\nSAS PROC MIXED uses the inverse of the Fisher-Information Matrix as approximation of Covariance-Matrix of Variance Components.") cat("\nThis is equal to the one obtained via ANOVA-approach stated in \"Variance Components\" (Searle et al. 1991) in case") cat("\nof balanced designs, otherwise Var(VC) of both results may differ:\n\n") CImat <- matrix(NA, ncol=6, nrow=4) colnames(CImat) <- c("SAS_LCL", "R_LCL", "SAS_UCL", "R_UCL", "LCL_Diff", "UCL_Diff") rownames(CImat) <- rownames(Rresult$aov.tab)[2:5] CImat[,1] <- SASresult[,"Lower"] CImat[,3] <- SASresult[,"Upper"] CImat[,2] <- RinfRes[2:5,"LCL"] CImat[,4] <- RinfRes[2:5, "UCL"] CImat[,5] <- CImat[,1] - CImat[,2] CImat[,6] <- CImat[,3] - CImat[,4] print(CImat) cat("\n\n") } formatTFno <- function(x) { if(x < 10) return(paste("00", x, sep="")) else if(x < 100) return(paste("0", x, sep="")) else return(x) } # Function serves as helper function to define input-parameters of 'generic.test.function' in # separate environments. get.test.function <- function(Data, prec=NULL) { inputData <- Data precision <- prec f <- function(){generic.test.function(Data=inputData, prec=precision)} return(f) } if(realWorldModel1) { for(i in 1:nrow(by_PID_Lot)) { fname <- paste("TF", formatTFno(noTF+i), ".PID_", by_PID_Lot[i, "PID"], "_Lot_", by_PID_Lot[i, "lot"], sep="") tmp.data <- realData[which(realData$PID == by_PID_Lot[i, "PID"] & realData$lot == by_PID_Lot[i, "lot"]),] assign(fname, get.test.function(Data=tmp.data, prec=TestPrecision)) } noTF <- noTF + nrow(by_PID_Lot) } ######### Model 2 for the real-world dataset model2 <- y~lot/calibration/day/run ### note, "tc.path" defined in RunAllTests.R SASrefModel2 <- read.delim(paste(tc.path, "SASresultsRealData_Model2_by_PID.txt", sep="/"), header=TRUE) PIDs <- unique(as.character(realData$PID)) generic.test.function2 <- function(Data, prec=NULL) { PID <- Data$PID[1] cat("\n>>> REAL-DATA MODEL 2: Check R VCA results v.s SAS PROC MIXED reference results for PID =",PID) cat(" (tolerance-value:", prec, ")\n") SASresult <- SASrefModel2[which(SASrefModel2$PID == PID),] Rresult <- anovaVCA(model2, Data, NegVC=TRUE) RinfRes <- VCAinference(Rresult, VarVC=TRUE, constrainCI=FALSE)$ConfInt$VC$TwoSided nr <- nrow(Rresult$aov.tab) # actually check SAS- and R-results for(i in 2:nr) { checkEquals(signif(Rresult$aov.tab[i, "VC"], Nsignif(SASresult[i-1, "Estimate"])), SASresult[i-1, "Estimate"], # check equality of all VC-estimates tolerance=prec) if(i == 6) # also check CI of error-VC { checkEquals(signif(RinfRes[i, "LCL"], Nsignif(SASresult[i-1, "Lower"])), SASresult[i-1, "Lower"], tolerance=prec) checkEquals(signif(RinfRes[i, "UCL"], Nsignif(SASresult[i-1, "Upper"])), SASresult[i-1, "Upper"], tolerance=prec) } } cat("\n\nSAS PROC MIXED uses the inverse of the Fisher-Information Matrix as approximation of Covariance-Matrix of Variance Components.") cat("\nThis is equal to the one obtained via ANOVA-approach stated in \"Variance Components\" (Searle et al. 1991) in case") cat("\nof balanced designs, otherwise Var(VC) of both results may differ:\n\n") CImat <- matrix(NA, ncol=6, nrow=5) colnames(CImat) <- c("SAS_LCL", "R_LCL", "SAS_UCL", "R_UCL", "LCL_Diff", "UCL_Diff") rownames(CImat) <- rownames(Rresult$aov.tab)[2:6] CImat[,1] <- SASresult[,"Lower"] CImat[,3] <- SASresult[,"Upper"] CImat[,2] <- RinfRes[2:6,"LCL"] CImat[,4] <- RinfRes[2:6, "UCL"] CImat[,5] <- CImat[,1] - CImat[,2] CImat[,6] <- CImat[,3] - CImat[,4] print(CImat) cat("\n\n") } # Function serves as helper function to define input-parameters of 'generic.test.function' in # separate environments. get.test.function2 <- function(Data, prec=NULL) { inputData <- Data precision <- prec f <- function(){generic.test.function2(Data=inputData, prec=precision)} return(f) } if(realWorldModel2) { for(i in 1:length(PIDs)) { fname <- paste("TF", formatTFno(noTF+i), ".Model2_PID_", PIDs[i], sep="") tmp.data <- realData[which(realData$PID == PIDs[i]),] assign(fname, get.test.function2(Data=tmp.data, prec=TestPrecision) ) } }