library(Unico) test_that("association testing on cell-type and tissue level covariates has good power and FP control", { skip_on_cran() basedir <- "../assets/" #source-specific association sim.data = readRDS(file.path(basedir,"simulation.gammas.10.rds")) Unico.mdl = list() Unico.mdl$params.hat <- Unico(sim.data$X, sim.data$W, C1 = sim.data$C1, C2 = sim.data$C2, parallel = F) Unico.mdl$params.hat = association_parametric(X = sim.data$X, Unico.mdl$params.hat, parallel = F) #marginal power marg.pvals = Unico.mdl$params.hat$parametric$gammas_hat_pvals expect_equal(sum(marg.pvals < 0.05/(nrow(marg.pvals) * ncol(marg.pvals)))/(nrow(marg.pvals) * ncol(marg.pvals)) > 0.9, TRUE) #joint power joint.pvals = Unico.mdl$params.hat$parametric$gammas_hat_pvals.joint expect_equal(sum(joint.pvals < 0.05/(length(joint.pvals)))/(length(joint.pvals)) > 0.95, TRUE) #FP control on non-source-specific global.marg.pvals = Unico.mdl$params.hat$parametric$betas_hat_pvals expect_equal(sum(global.marg.pvals < 0.05/(nrow(global.marg.pvals) * ncol(global.marg.pvals)))/(nrow(global.marg.pvals) * ncol(global.marg.pvals)) < 0.05, TRUE) #non-source-specific association sim.data = readRDS(file.path(basedir,"simulation.betas.10.rds")) Unico.mdl = list() Unico.mdl$params.hat <- Unico(sim.data$X, sim.data$W, C1 = sim.data$C1, C2 = sim.data$C2, parallel = F) Unico.mdl$params.hat = association_parametric(X = sim.data$X, Unico.mdl$params.hat, parallel = F) #marginal FP control marg.pvals = Unico.mdl$params.hat$parametric$gammas_hat_pvals expect_equal(sum(marg.pvals < 0.05/(nrow(marg.pvals) * ncol(marg.pvals)))/(nrow(marg.pvals) * ncol(marg.pvals)) < 0.05, TRUE) #joint FP control joint.pvals = Unico.mdl$params.hat$parametric$gammas_hat_pvals.joint expect_equal(sum(joint.pvals < 0.05/(length(joint.pvals)))/(length(joint.pvals)) < 0.05, TRUE) #non-source-specific power global.marg.pvals = Unico.mdl$params.hat$parametric$betas_hat_pvals expect_equal(sum(global.marg.pvals < 0.05/(nrow(global.marg.pvals) * ncol(global.marg.pvals)))/(nrow(global.marg.pvals) * ncol(global.marg.pvals)) > 0.95, TRUE) })