library(Umpire) ##################### #JX: do not run the following for now if(FALSE) { mu <- rnorm(6, 0, 1) sigma <- 1/rgamma(6, 2, 3) ind <- IndependentNormal(mu, sigma) roo <- rand(ind, 3) a <- runif(1) b <- sqrt(1-a^2) X <- matrix(c(a, b, -b, a), 2, 2) Lambda2 <- diag(rev(sort(rexp(2))), 2) Y <- t(X) %*% Lambda2 %*% X marvin <- MVN(c(0,0), Y) mar2 <- alterSD(marvin, function(x) 2*x) mar2 <- alterSD(marvin, function(x) 1+x) roo <- rand(marvin, 1000) cov(t(roo)) engine <- new("Engine", components=list(marvin, marvin, ind)) roo <- rand(engine, 3) cancerEngine <- alterMean(engine, normalOffset, delta=0, sigma=1.5) nrow(ind) nrow(marvin) nrow(engine) #JX: change "x <- CancerModel(30, 10," to the following line x <- CancerModel('test',30, 10, HIT=function(n) 3+rbinom(1, 4, 0.7), SURV=function(n) rnorm(n, 0, 2), OUT=function(n) rnorm(n, 0, 2)) ################################### rot <- function(n, N) {M <- (N-2)/2; x <- rbeta(n,M,M); 2*x-1} qot <- function(p, N) {M <- (N-2)/2; x <- qbeta(p,M,M); 2*x-1} pot <- function(q, N) {M <- (N-2)/2; pbeta((q+1)/2,M,M)} xx <- seq(0,1, length=300) yy <- 2*xx-1 plot(xx, pbeta(xx, 10, 10)) plot(xx, qbeta(xx, 10, 10)) plot(xx, qot(xx, 12)) plot(yy, pot(yy, 12)) qot(0.99, 10) ### mutual information with NED status mutinf <- function(x, y, ncut=10) { temp <- diff(sort(x)) epsilon <- min(temp[temp>0])/2 decile <- trunc(1+ncut*(x-min(x))/(epsilon+max(x)-min(x))) if (length(unique(y)) > ncut ) { tem <- diff(sort(y)) eps <- min(temp[tem>0])/2 yo <- trunc(1+ncut*(y-min(y))/(epsilon+max(y)-min(y))) } else { yo <- y } tab <- table(decile, yo) tab <- tab/sum(tab) px <- apply(tab, 1, sum) py <- apply(tab,2, sum) stab <- tab*log2(tab/outer(px, py)) sum(stab, na.rm=TRUE) } mutinf(rnorm(1000), rnorm(1000)) x <- rnorm(1000) mutinf(x, x) y <- rbinom(1000, 1,0.5) mutinf(x,y) N <- 50 x <- rnorm(N) y <- unlist(lapply(1:500, function(i, xx) { mutinf(xx, rnorm(length(xx))) }, x)) hist(y) require(mclust) N <- 500 x <- rnorm(300) a2 <- Mclust(x, 2, 2) a1 <- Mclust(x, 1, 1) chi1 <- 2*(a2$loglik - a1$loglik) chi <- rep(NA, N) for (i in 1:N) { print(i) y <- sample(x, 300, replace=TRUE) a2 <- Mclust(y, 2, 2) a1 <- Mclust(y, 1, 1) chi[i] <- 2*(a2$loglik - a1$loglik) } x <- rnorm(10000, 0, 1) y <- rnorm(10000, 10, 1) z <- 0.3*x + 0.7*y mean(z) var(z) sd(z) xx <- seq(-5, 5, length=400) yy <- dnorm(xx, 0, 0.3) + dnorm(xx, 0, 3) plot(xx, yy) nns <- function(delta, sigma, alpha=0.05, beta=0.20) { z.a2 <- qnorm(1-alpha/2) z.b <- qnorm(1-beta) (z.a2 + z.b)^2*sigma^2/delta^2 } a <- seq(0,1, length=200) plot(sqrt(a^2 + (1-a)^2), type='l') 1.666667*c(0.51, 0.557, 0.586) 1.666667*c(0.51, 0.557, 0.586)*0.7 2^(c(0.51, 0.557, 0.586)) 2^(1.666667*c(0.51, 0.557, 0.586)) 2^(c(0.51, 0.557, 0.586)*0.7) 2^(1.666667*c(0.51, 0.557, 0.586)*0.7) }