library(Umpire) # set seed to ensure reproducibility suppressWarnings( RNGversion("3.5.3") ) set.seed(539586) # create a cancer model x <- CancerModel('test', 30, 10, HIT = function(n) 3+rbinom(1, 4, 0.7), SURV = function(n) rnorm(n, 0, 2), OUT = function(n) rnorm(n, 0, 2)) # describe the model print(paste('Number of patterns:', nPatterns(x), '(should equal 10)')) print(paste('Number of hits:', nPossibleHits(x), '(should equal 30)')) print(nHitsPerPattern(x)) summary(x) # check correlation cor(survivalCoefficients(x), outcomeCoefficients(x)) plot(survivalCoefficients(x), outcomeCoefficients(x)) # generate outcome data from the model y <- rand(x, 300) print(table(y$Outcome, y$CancerSubType)) if (require(survival)) { plot(survfit(Surv(LFU, Event) ~ Outcome, y)) z <- coxph(Surv(LFU, Event) ~ Outcome, y) summary(z) } # cleanup rm(x, y, z)