context("ptrunc(), upper truncation") test_that("upper truncation works as expected (normal)", { lt <- TRUE lg <- FALSE for (lt in c(TRUE, FALSE)) { for (lg in c(FALSE, TRUE)) { for (i in seq_len(3L)) { mn <- rnorm(1L, sd = 10) sg <- rchisq(1L, 5L) qt <- rnorm(i, mn, sg) b <- max(qt) + rchisq(1L, 5L) p_trunc <- ptrunc( qt, lower.tail = lt, log.p = lg, mean = mn, sd = sg, b = b ) p_norm <- pnorm(qt, lower.tail = lt, log.p = lg, mean = mn, sd = sg) expect_length(qt, i) expect_length(p_trunc, i) for (q in seq_along(qt)) { if (!lg) { expect_gte(p_trunc[q], 0) expect_lte(p_trunc[q], 1) if (lt) { expect_gte(p_trunc[q], p_norm[q]) } else { expect_lte(p_trunc[q], p_norm[q]) } } else { expect_lte(p_trunc[q], 0) } } } } } }) test_that("upper truncation works as expected (beta)", { for (lt in c(TRUE, FALSE)) { for (lg in c(FALSE, TRUE)) { for (i in seq_len(3L)) { shp1 <- sample(1:10, 1L) shp2 <- sample(1:10, 1L) b <- runif(1) qt <- runif(i, 0, b) p_trunc <- ptrunc( qt, "beta", shp1, shp2, b = b, lower.tail = lt, log.p = lg ) p_beta <- pbeta(qt, shp1, shp2, ncp = 0, lt, lg) expect_length(qt, i) expect_length(p_trunc, i) for (q in seq_along(qt)) { if (!lg) { expect_gte(p_trunc[q], 0) expect_lte(p_trunc[q], 1) if (lt) { expect_gte(p_trunc[q], p_beta[q]) } else { expect_lte(p_trunc[q], p_beta[q]) } } else { expect_lte(p_trunc[q], 0) } } } } } }) test_that("upper truncation works as expected (binomial)", { for (lt in c(TRUE, FALSE)) { for (lg in c(FALSE, TRUE)) { for (i in seq_len(3L)) { size <- sample(10:50, 1L) prob <- runif(1) b <- sample(2:(size - 1L), 1L) qt <- sample(0:(b - 1L), i, replace = TRUE) p_trunc <- ptrunc( qt, "binomial", size, prob, b = b, lower.tail = lt, log.p = lg ) p_binom <- pbinom(qt, size, prob, lower.tail = lt, log.p = lg) expect_length(qt, i) expect_length(p_trunc, i) for (q in seq_along(qt)) { if (!lg) { expect_gte(p_trunc[q], 0) expect_lte(p_trunc[q], 1) if (abs(p_trunc[q] - p_binom[q]) > 1e-10) { # adding tolerance if (lt) { expect_gte(p_trunc[q], p_binom[q]) } else { expect_lte(p_trunc[q], p_binom[q]) } } } else { expect_lte(p_trunc[q], 0) } } } } } }) test_that("upper truncation works as expected (poisson)", { for (lt in c(TRUE, FALSE)) { for (lg in c(FALSE, TRUE)) { for (i in seq_len(3L)) { lambda <- sample(10:50, 1L) max_qt <- qpois(p = .99, lambda) b <- sample(seq(lambda, max_qt), 1L) qt <- sample(seq(1L, b - 1L), i, replace = TRUE) p_trunc <- ptrunc( qt, "poisson", lambda, b = b, lower.tail = lt, log.p = lg ) p_pois <- ppois(qt, lambda, lower.tail = lt, log.p = lg) expect_length(qt, i) expect_length(p_trunc, i) for (q in seq_along(qt)) { if (!lg) { expect_gte(p_trunc[q], 0) expect_lte(p_trunc[q], 1) if (abs(p_trunc[q] - p_pois[q]) > 1e-10) { # adding tolerance if (lt) { expect_gte(p_trunc[q], p_pois[q]) } else { expect_lte(p_trunc[q], p_pois[q]) } } } else { expect_lte(p_trunc[q], 0) } } } } } }) test_that("upper truncation works as expected (chisq)", { for (lt in c(TRUE, FALSE)) { for (lg in c(FALSE, TRUE)) { for (i in seq_len(3L)) { df <- sample(1:100, 1L) b <- max(rchisq(10L, df)) qt <- runif(i, 0, b) p_trunc <- ptrunc( qt, "chisq", df, b = b, lower.tail = lt, log.p = lg ) p_chisq <- pchisq(qt, df, ncp = 0, lower.tail = lt, log.p = lg) expect_length(qt, i) expect_length(p_trunc, i) for (q in seq_along(qt)) { if (!lg) { expect_gte(p_trunc[q], 0) expect_lte(p_trunc[q], 1) if (abs(p_trunc[q] - p_chisq[q]) > 1e-10) { # adding tolerance if (lt) { expect_gte(p_trunc[q], p_chisq[q]) } else { expect_lte(p_trunc[q], p_chisq[q]) } } } else { expect_lte(p_trunc[q], 0) } } } } } }) test_that("upper truncation works as expected (contbern)", { for (i in seq_len(3L)) { lambda <- runif(1L) b <- runif(1L) qt <- runif(i, 0L, b) p_trunc <- ptrunc(qt, "contbern", lambda, b = b) p_contbern <- pcontbern(qt, lambda) expect_length(qt, i) expect_length(p_trunc, i) for (q in seq_along(qt)) { expect_gte(p_trunc[q], p_contbern[q]) } } }) test_that("upper truncation works as expected (exp)", { for (lt in c(TRUE, FALSE)) { for (lg in c(FALSE, TRUE)) { for (i in seq_len(3L)) { rate <- rchisq(1L, df = 10L) b <- rexp(1L, rate) qt <- replicate(i, min(rexp(10L, rate), b)) p_trunc <- ptrunc( qt, "exp", rate, b = b, lower.tail = lt, log.p = lg ) p_exp <- pexp(qt, rate, lower.tail = lt, log.p = lg) expect_length(qt, i) expect_length(p_trunc, i) for (q in seq_along(qt)) { if (!lg) { expect_gte(p_trunc[q], 0) expect_lte(p_trunc[q], 1) if (abs(p_trunc[q] - p_exp[q]) > 1e-10) { # adding tolerance if (lt) { expect_gte(p_trunc[q], p_exp[q]) } else { expect_lte(p_trunc[q], p_exp[q]) } } } else { expect_lte(p_trunc[q], 0) } } } } } }) test_that("upper truncation works as expected (gamma)", { for (lt in c(TRUE, FALSE)) { for (lg in c(FALSE, TRUE)) { for (i in seq_len(3L)) { shp <- rchisq(1L, df = 10L) rte <- rchisq(1L, df = 10L) b <- rgamma(1L, shp, rte) qt <- runif(i, 0, b) p_trunc <- ptrunc( qt, "gamma", shp, rate = rte, b = b, lower.tail = lt, log.p = lg ) p_trunc_2 <- ptrunc( qt, "gamma", shp, scale = 1 / rte, b = b, lower.tail = lt, log.p = lg ) p_gamma <- pgamma(qt, shp, rate = rte, lower.tail = lt, log.p = lg) expect_length(qt, i) expect_length(p_trunc, i) for (q in seq_along(qt)) { if (!lg) { expect_gte(p_trunc[q], 0) expect_lte(p_trunc[q], 1) expect_gte(p_trunc_2[q], 0) expect_lte(p_trunc_2[q], 1) if (abs(p_trunc[q] - p_gamma[q]) > 1e-10) { # adding tolerance if (lt) { expect_gte(p_trunc[q], p_gamma[q]) expect_gte(p_trunc_2[q], p_gamma[q]) } else { expect_lte(p_trunc[q], p_gamma[q]) expect_lte(p_trunc_2[q], p_gamma[q]) } } } else { expect_lte(p_trunc[q], 0) expect_lte(p_trunc_2[q], 0) } } expect_equal(p_trunc, p_trunc_2) } } } }) test_that("upper truncation works as expected (invgamma)", { for (lt in c(TRUE, FALSE)) { for (lg in c(FALSE, TRUE)) { for (i in seq_len(3L)) { shp <- rchisq(1L, df = 10L) rte <- rchisq(1L, df = 10L) b <- rinvgamma(1L, shp, rte) qt <- runif(i, 0, b) p_trunc <- ptrunc( qt, "invgamma", shp, rate = rte, b = b, lower.tail = lt, log.p = lg ) p_trunc_2 <- ptrunc( qt, "invgamma", shp, scale = 1 / rte, b = b, lower.tail = lt, log.p = lg ) p_invgamma <- pinvgamma( qt, shp, rate = rte, lower.tail = lt, log.p = lg ) expect_length(qt, i) expect_length(p_trunc, i) for (q in seq_along(qt)) { if (!lg) { expect_gte(p_trunc[q], 0) expect_lte(p_trunc[q], 1) expect_gte(p_trunc_2[q], 0) expect_lte(p_trunc_2[q], 1) if (abs(p_trunc[q] - p_invgamma[q]) > 1e-10) { # adding tolerance if (lt) { expect_gte(p_trunc[q], p_invgamma[q]) expect_gte(p_trunc_2[q], p_invgamma[q]) } else { expect_lte(p_trunc[q], p_invgamma[q]) expect_lte(p_trunc_2[q], p_invgamma[q]) } } } else { expect_lte(p_trunc[q], 0) expect_lte(p_trunc_2[q], 0) } } expect_equal(p_trunc, p_trunc_2) } } } }) test_that("upper truncation works as expected (invgauss)", { for (i in seq_len(3L)) { m <- rchisq(1L, df = 10L) s <- rchisq(1L, df = 10L) b <- rinvgauss(1L, m, s) qt <- replicate(i, min(rinvgauss(10L, m, s), b)) p_trunc <- ptrunc(qt, "invgauss", m, s, b = b) p_invgauss <- pinvgauss(qt, m, s) expect_length(qt, i) expect_length(p_trunc, i) for (q in seq_along(qt)) { expect_gte(p_trunc[q], 0) expect_lte(p_trunc[q], 1) expect_gte(p_trunc[q], p_invgauss[q]) } } }) test_that("upper truncation works as expected (lognormal)", { for (lt in c(TRUE, FALSE)) { for (lg in c(FALSE, TRUE)) { for (i in seq_len(3L)) { meanlog <- rnorm(1L, sd = 10) sdlog <- rchisq(1L, 5L) qt <- rlnorm(i, meanlog, sdlog) b <- rlnorm(1L, meanlog, sdlog) while (any(b < qt)) { b <- rlnorm(1L, meanlog, sdlog) } p_trunc <- ptrunc( qt, "lognormal", meanlog, sdlog, b = b, lower.tail = lt, log.p = lg ) p_ln <- plnorm(qt, meanlog, sdlog, lower.tail = lt, log.p = lg) expect_length(qt, i) expect_length(p_trunc, i) for (q in seq_along(qt)) { if (!lg) { expect_gte(p_trunc[q], 0) expect_lte(p_trunc[q], 1) if (abs(p_trunc[q] - p_ln[q]) > 1e-10) { # adding tolerance if (lt) { expect_gte(p_trunc[q], p_ln[q]) } else { expect_lte(p_trunc[q], p_ln[q]) } } } else { expect_lte(p_trunc[q], 0) } } } } } }) test_that("upper truncation works as expected (negative binomial)", { for (lt in c(TRUE, FALSE)) { for (lg in c(FALSE, TRUE)) { for (i in seq_len(3L)) { size <- sample(1:10, 1L) prob <- runif(1) mu <- size * (1 - prob) / prob qt <- rnbinom(i, size, prob) b <- rnbinom(1L, size, prob) while (any(b < qt)) { b <- rnbinom(1L, size, prob) } p_trunc <- ptrunc( qt, "nbinom", size, prob, lower.tail = lt, log.p = lg, b = b ) p_trunc_2 <- ptrunc( qt, "nbinom", size, mu = mu, lower.tail = lt, log.p = lg, b = b ) p_binom <- pnbinom(qt, size, prob, lower.tail = lt, log.p = lg) expect_length(qt, i) expect_length(p_trunc, i) expect_equal(p_trunc, p_trunc_2, tolerance = 1e-6) for (q in seq_along(qt)) { if (!lg) { expect_gte(p_trunc[q], 0) expect_lte(p_trunc[q], 1) if (abs(p_trunc[q] - p_binom[q]) > 1e-10) { # adding tolerance if (lt) { expect_gte(p_trunc[q], p_binom[q]) } else { expect_lte(p_trunc[q], p_binom[q]) } } } else { expect_lte(p_trunc[q], 0) } } } } } })