context("Estimating from numeric (classless) vectors") set.seed(2828324) cont01 <- rbeta(1e4, shape1 = 10, shape2 = 100) cont01b <- cont01 / max(cont01) # better resembles a contbern candidate disc0inf <- rpois(1e4, lambda = 10) cont0inf <- rchisq(1e4, df = 10) cont0infb <- exp(-cont0inf) contReal <- rnorm(1e4, mean = 10, sd = 10) test_that("Estimation works, in general", { # Improper samples expect_error( mlEstimationTruncDist(contReal), "choose an underlying distribution" ) expect_error( mlEstimationTruncDist(contReal, family = "beta"), "outside of support" ) # Proper samples expect_named( mlEstimationTruncDist(cont01, family = "beta"), c("shape1", "shape2") ) expect_named( mlEstimationTruncDist(disc0inf, family = "binomial"), "prob" ) expect_named( mlEstimationTruncDist(cont0inf, family = "chisq"), "df" ) expect_named( mlEstimationTruncDist(cont01b, family = "contbern"), "lambda" ) expect_named( mlEstimationTruncDist(cont0infb, family = "exp"), "rate" ) expect_named( mlEstimationTruncDist(cont0inf, family = "gamma"), c("shape", "rate") ) expect_named( mlEstimationTruncDist(cont0inf, family = "invgamma"), c("shape", "rate") ) expect_named( mlEstimationTruncDist(cont0inf, family = "invgauss", tol = .1), c("m", "s") ) expect_named( mlEstimationTruncDist(cont0inf, family = "lognormal"), c("meanlog", "sdlog") ) expect_named( mlEstimationTruncDist(disc0inf, family = "nbinom"), "mean" ) expect_named( mlEstimationTruncDist(contReal, family = "normal"), c("mean", "sd") ) expect_named( mlEstimationTruncDist(disc0inf, family = "poisson"), "lambda" ) }) test_that("Original parameters are retrieved", { mlBeta <- mlEstimationTruncDist(cont01, family = "beta") expect_equal( mlBeta, c("shape1" = 10, "shape2" = 100), tol = 1e-1, check.attributes = FALSE ) expect_equal(mlBeta[["shape1"]] / sum(mlBeta), mean(cont01), tol = 1e-1) expect_equal( mlEstimationTruncDist(disc0inf, family = "binomial"), c("prob" = mean(disc0inf) / max(disc0inf)), tol = 1e-1, check.attributes = FALSE ) expect_equal( mlEstimationTruncDist(cont0inf, family = "chisq"), c("df" = mean(disc0inf)), tol = 1e-1, check.attributes = FALSE ) expect_equal( mlEstimationTruncDist(cont01b, family = "contbern"), c("lambda" = mean(cont01b)), tol = 1e-1, check.attributes = FALSE ) expect_equal( mlEstimationTruncDist(cont0infb, family = "exp"), c("rate" = mean(cont0infb)), tol = 1e-1, check.attributes = FALSE ) mlGamma <- mlEstimationTruncDist(cont0inf, family = "gamma") expect_equal( mlGamma, c("shape" = 4.961, "rate" = 0.498), tol = 1e-1, check.attributes = FALSE ) expect_equal( mlGamma[["shape"]] / mlGamma[["rate"]], mean(cont0inf), tol = 1e-1 ) mlInvGamma <- mlEstimationTruncDist(cont0inf, family = "invgamma") expect_equal( mlInvGamma, c("shape" = 6.972, "rate" = 59.397), tol = 1e-1, check.attributes = FALSE ) expect_equal( mlInvGamma[["rate"]] / (mlInvGamma[["shape"]] - 1), mean(cont0inf), tol = 1e-1 ) expect_equal( mlEstimationTruncDist(cont0inf, family = "invgauss", tol = .1), c("m" = mean(cont0inf), "s" = var(cont0inf) / mean(cont0inf) ^ 3), tol = 1e0, check.attributes = FALSE ) expect_equal( mlEstimationTruncDist(cont0inf, family = "lognormal"), c("mean" = mean(log(cont0inf)), "sd" = sd(log(cont0inf))), tol = 1e-1, check.attributes = FALSE ) expect_equal( mlEstimationTruncDist(disc0inf, family = "nbinom"), c("mean" = mean(disc0inf)), tol = 1e-1, check.attributes = FALSE ) expect_equal( mlEstimationTruncDist(contReal, family = "normal"), c("mean" = mean(contReal), "sd" = sd(contReal)), tol = 1e-1, check.attributes = FALSE ) expect_equal( mlEstimationTruncDist(disc0inf, family = "poisson"), c("lambda" = mean(contReal)), tol = 1e-1, check.attributes = FALSE ) })