context("dtrunc") sample_size <- 10 sample <- list( "beta" = rtruncbeta(sample_size, shape1 = 15, shape2 = 4), "binomial" = rtruncbinom(sample_size, prob = 0.6, size = 20), "chisq" = rtruncchisq(sample_size, df = 50), "contbern" = rtrunccontbern(sample_size, lambda = .4), "exp" = rtruncexp(sample_size, rate = 6), "gamma" = rtruncgamma(sample_size, shape = 6, rate = 2, a = 2), "invgamma" = rtruncinvgamma(sample_size, shape = 23, rate = 24), "invgauss" = rtruncinvgauss(sample_size, m = 3, s = 1), "lognormal" = rtrunclnorm(sample_size, meanlog = 2.5, sdlog = 0.5), "nbinom" = rtruncnbinom(sample_size, size = 50, prob = .3), "normal" = rtruncnorm(sample_size, mean = 2, sd = 1.5), "poisson" = rtruncpois(sample_size, lambda = 10) ) test_that("dtrunc* works like its stats counterpart", { expect_equal(dtrunc(sample$beta, 15, 4), dbeta(sample$beta, 15, 4)) expect_equal(dtrunc(sample$binomial, 20, .6), dbinom(sample$binomial, 20, .6)) expect_equal(dtrunc(sample$chisq, 50), dchisq(sample$chisq, 50)) expect_equal(dtrunc(sample$contbern, .4), dcontbern(sample$contbern, .4)) expect_equal(dtrunc(sample$exp), dexp(sample$exp)) expect_equal(dtrunc(sample$gamma, 6, 2), dgamma(sample$gamma, 6, 2)) expect_equal(dtrunc(sample$invgamma, 23, 24), dinvgamma(sample$invgamma, 23, 24)) expect_equal(dtrunc(sample$invgauss, 3, 1), dinvgauss(sample$invgauss, 3, 1)) expect_equal(dtrunc(sample$lognormal, 2.5, .5), dlnorm(sample$lognormal, 2.5, .5)) expect_equal(dtrunc(sample$nbinom, 50, .3), dnbinom(sample$nbinom, 50, .3)) expect_equal(dtrunc(sample$normal), dnorm(sample$normal)) expect_equal(dtrunc(sample$poisson, 10), dpois(sample$poisson, 10)) })