# trial_msm ---- test_that("trial_msm can be quiet", { data("te_data_ex") expect_silent( result <- trial_msm( data = te_data_ex, outcome_cov = c("catvarA", "nvarA"), model_var = "assigned_treatment", include_followup_time = ~followup_time, include_trial_period = ~trial_period, use_sample_weights = FALSE, quiet = TRUE, glm_function = "glm" ) ) }) test_that("trial_msm gives expected results in example data", { data <- vignette_switch_data result <- trial_msm( data, outcome_cov = c("catvarA", "catvarB", "catvarC", "nvarA", "nvarB", "nvarC"), model_var = "assigned_treatment", include_followup_time = ~followup_time, include_trial_period = ~trial_period, use_sample_weights = FALSE, quiet = TRUE, glm_function = "parglm", control = parglm.control(nthreads = 2) ) expect_class(result$model, "glm") expected_coefs <- c( `(Intercept)` = -3.44513044265409, assigned_treatment = -0.279511046771487, trial_period = 0.00193709391469456, followup_time = 0.00139579193160405, catvarA = 0.0586518690748273, catvarB = -0.0545402601125559, catvarC = -0.0209619578642913, nvarA = -0.0794050643431851, nvarB = 0.00477012273880385, nvarC = -0.0404651039259053 ) expect_equal(result$model$coefficients, expected_coefs) expect_equal( result$robust$summary$names, c( "(Intercept)", "assigned_treatment", "trial_period", "followup_time", "catvarA", "catvarB", "catvarC", "nvarA", "nvarB", "nvarC" ) ) expected_robust_se <- c( 0.608156159520476, 0.309527599563302, 0.00159274700265935, 0.0015016748931986, 0.0312208855654385, 0.0296048600610076, 0.0263579673428329, 0.0447759173905258, 0.00231602984314177, 0.00671869054658421 ) expect_equal(result$robust$summary$robust_se, expected_robust_se) expect_matrix(result$robust$matrix, nrows = 10, ncols = 10, any.missing = FALSE) }) test_that("trial_msm works with data.tables and weights", { data <- as.data.table(TrialEmulation::vignette_switch_data) expect_silent( result_parglm <- trial_msm( data, outcome_cov = c("catvarA", "nvarA"), model_var = "assigned_treatment", include_followup_time = ~followup_time, include_trial_period = ~trial_period, use_sample_weights = FALSE, analysis_weights = "asis", glm_function = "parglm", control = parglm.control(nthreads = 2, method = "FAST"), quiet = TRUE ) ) expect_silent( result_glm <- trial_msm( data, outcome_cov = c("catvarA", "nvarA"), model_var = "assigned_treatment", include_followup_time = ~followup_time, include_trial_period = ~trial_period, use_sample_weights = FALSE, analysis_weights = "asis", glm_function = "glm", quiet = TRUE ) ) expect_equal(result_glm$model$coefficients, result_parglm$model$coefficients) }) test_that("Modelling works with where_case", { skip_on_cran() if (FALSE) { set.seed(20222022) simdata_censored <- data_gen_censored(1000, 10) prep_PP_data <- data_preparation( data = simdata_censored, id = "ID", period = "t", treatment = "A", outcome = "Y", eligible = "eligible", outcome_cov = ~ X1 + X2 + X3 + X4 + age_s, model_var = "assigned_treatment", use_censor_weights = TRUE, estimand_type = "PP", switch_d_cov = ~ X1 + X2 + X3 + X4 + age_s, switch_n_cov = ~ X3 + X4, cense = "C", cense_d_cov = ~ X1 + X2 + X3 + X4 + age_s, cense_n_cov = ~ X3 + X4, separate_files = FALSE, last_period = 8, first_period = 2, where_var = "age", quiet = TRUE ) saveRDS(simdata_censored, test_path("data/raw_data.rds")) saveRDS(prep_PP_data, test_path("data/prep_data_object.rds")) saveRDS(prep_PP_data$data, test_path("data/ready_for_modelling.rds")) } data <- readRDS(test_path("data/ready_for_modelling.rds")) expect_warning( result <- trial_msm( data = data, outcome_cov = ~ X1 + X2 + X3 + X4 + age_s, model_var = "assigned_treatment", analysis_weights = "asis", include_followup_time = ~ factor(followup_time), include_trial_period = ~1, glm_function = c("glm"), use_sample_weights = FALSE, first_followup = 0, last_followup = 4, where_case = "age > 30", quiet = TRUE ), "non-integer #successes in a binomial glm" ) expect_class(result$model, "glm") expect_snapshot_value(as.data.frame(result$robust$summary), style = "json2") }) test_that("trial_msm works with analysis_weights = unweighted", { skip_on_cran() data <- readRDS(test_path("data/ready_for_modelling.rds")) expect_silent( result_unweighted <- trial_msm( data, outcome_cov = ~ X1 + X2 + X3 + X4 + age_s, model_var = "assigned_treatment", include_followup_time = ~followup_time, include_trial_period = ~trial_period, use_sample_weights = FALSE, glm_function = "glm", quiet = TRUE, analysis_weights = "unweighted" ) ) expect_snapshot_value(as.data.frame(result_unweighted$robust$summary), style = "json2") }) test_that("trial_msm works with analysis_weights = p99", { skip_on_cran() data <- readRDS(test_path("data/ready_for_modelling.rds")) expect_warning( result_p99 <- trial_msm( data, outcome_cov = ~ X1 + X2 + X3 + X4 + age_s, model_var = "assigned_treatment", include_followup_time = ~followup_time, include_trial_period = ~trial_period, use_sample_weights = FALSE, glm_function = "glm", quiet = TRUE, analysis_weights = "p99" ), "non-integer #successes in a binomial glm!" ) expect_snapshot_value(as.data.frame(result_p99$robust$summary), style = "json2") quantiles <- quantile(data$weight, prob = c(0.01, 0.99), type = 1) expect_equal(quantiles, c(`1%` = 0.264964755418739, `99%` = 1.67299290397343)) w <- data$weight w[w > quantiles[2]] <- quantiles[2] w[w < quantiles[1]] <- quantiles[1] expect_equal(result_p99$model$prior.weights, w, ignore_attr = "names") }) test_that("trial_msm works with analysis_weights = weight_limits", { skip_on_cran() data <- readRDS(test_path("data/ready_for_modelling.rds")) expect_warning( result_limits <- trial_msm( data, outcome_cov = ~ X1 + X2 + X3 + X4 + age_s, model_var = "assigned_treatment", include_followup_time = ~followup_time, include_trial_period = ~trial_period, use_sample_weights = FALSE, glm_function = "glm", quiet = TRUE, analysis_weights = "weight_limits", weight_limits = c(0, Inf) ), "non-integer #successes in a binomial glm!" ) expect_snapshot_value(as.data.frame(result_limits$robust$summary), style = "json2") }) test_that("trial_msm works with missing sample weights", { skip_on_cran() data <- readRDS(test_path("data/ready_for_modelling.rds")) expect_warning( expect_warning( result_sample <- trial_msm( data, outcome_cov = ~ X1 + X2 + X3 + X4 + age_s, model_var = "assigned_treatment", include_followup_time = ~followup_time, include_trial_period = ~trial_period, analysis_weights = "asis", glm_function = "glm", quiet = TRUE, ), "non-integer #successes in a binomial glm!" ), "'sample_weight' column not found in data. Using sample weights = 1." ) expect_warning( expected_result <- trial_msm( data, outcome_cov = ~ X1 + X2 + X3 + X4 + age_s, model_var = "assigned_treatment", include_followup_time = ~followup_time, include_trial_period = ~trial_period, use_sample_weights = FALSE, analysis_weights = "asis", glm_function = "glm", quiet = TRUE, ), "non-integer #successes in a binomial glm!" ) expect_equal(result_sample$robust$summary, expected_result$robust$summary) }) test_that("trial_msm works with sample weights", { skip_on_cran() data <- readRDS(test_path("data/prep_data_object.rds")) set.seed(2020) sampled_data <- case_control_sampling_trials(data, p_control = 0.5) expect_warning( result_sample <- trial_msm( sampled_data, outcome_cov = ~ X1 + X2 + X3 + X4 + age_s, model_var = "assigned_treatment", include_followup_time = ~followup_time, include_trial_period = ~trial_period, use_sample_weights = TRUE, analysis_weights = "asis", glm_function = "glm", quiet = TRUE, ), "non-integer #successes in a binomial glm!" ) expect_snapshot_value(as.data.frame(result_sample$robust$summary), style = "json2") }) test_that("trial_msm makes model formula as expected with weight and censor", { skip_on_cran() data <- readRDS(test_path("data/prep_data_object.rds")) expect_warning( result_w_c <- trial_msm( data, outcome_cov = ~ X1 + X2 + X3 + X4 + age_s, include_followup_time = ~followup_time, include_trial_period = ~trial_period, use_sample_weights = FALSE, analysis_weights = "asis", estimand_type = "PP", glm_function = "glm", quiet = TRUE, ), "non-integer #successes in a binomial glm!" ) result_formula <- result_w_c$model$formula expected_formula <- outcome ~ assigned_treatment + trial_period + followup_time + X1 + X2 + X3 + X4 + age_s environment(expected_formula) <- environment(result_formula) <- globalenv() expect_equal(result_formula, expected_formula) }) test_that("trial_msm makes model formula as expected with estimand As-Treated", { skip_on_cran() set.seed(20222022) simdata_censored <- data_gen_censored(1000, 10) prep_PP_data <- data_preparation( data = simdata_censored, id = "ID", period = "t", treatment = "A", outcome = "Y", eligible = "eligible", outcome_cov = ~ X1 + X2, estimand_type = "As-Treated", pool_cense = "none", use_censor_weights = FALSE, switch_d_cov = ~ X1 + X2 + X3 + X4 + age_s, switch_n_cov = ~ X3 + X4, separate_files = FALSE, last_period = 8, first_period = 2, where_var = "age", quiet = TRUE ) expect_warning( result_w_c <- trial_msm( prep_PP_data, outcome_cov = ~ X1 + X2, include_followup_time = ~followup_time, include_trial_period = ~trial_period, use_sample_weights = FALSE, analysis_weights = "asis", estimand_type = "As-Treated", glm_function = "glm", quiet = TRUE, ), "non-integer #successes in a binomial glm!" ) result_formula <- result_w_c$model$formula expected_formula <- outcome ~ dose + I(dose^2) + trial_period + followup_time + X1 + X2 environment(expected_formula) <- environment(result_formula) <- globalenv() expect_equal(result_formula, expected_formula) }) test_that("trial_msm makes model formula as expected with estimand_type ITT and unweighted", { skip_on_cran() data <- readRDS(test_path("data/prep_data_object.rds")) result_w_c <- trial_msm( data, outcome_cov = ~ X1 + X2 + X3 + X4 + age_s, include_followup_time = ~followup_time, include_trial_period = ~trial_period, estimand = "ITT", use_sample_weights = FALSE, analysis_weights = "unweighted", glm_function = "glm", quiet = TRUE, ) result_formula <- result_w_c$model$formula expected_formula <- outcome ~ assigned_treatment + trial_period + followup_time + X1 + X2 + X3 + X4 + age_s environment(expected_formula) <- environment(result_formula) <- globalenv() expect_equal(result_formula, expected_formula) }) test_that("fit_msm works", { set.seed(2024) trial_itt_dir <- file.path(tempdir(), "trial_itt") dir.create(trial_itt_dir) trial_itt <- trial_sequence(estimand = "ITT") |> set_data( data = data_censored, id = "id", period = "period", treatment = "treatment", outcome = "outcome", eligible = "eligible" ) |> set_censor_weight_model( censor_event = "censored", numerator = ~x3, denominator = ~ x1 + x2 + x3, pool_models = "numerator", model_fitter = stats_glm_logit(save_path = file.path(trial_itt_dir, "switch_models")) ) |> calculate_weights() |> set_outcome_model( adjustment_terms = ~ x1 + x2, followup_time_terms = ~followup_time, trial_period_terms = ~1 ) trial_itt_expanded <- set_expansion_options( trial_itt, output = save_to_csv(file.path(trial_itt_dir, "trial_csvs")), chunk_size = 500 ) |> expand_trials() |> load_expanded_data() # fit_msm returns a trial_sequence object expect_warning( fm_01 <- fit_msm(trial_itt_expanded), "non-integer" ) expect_class(fm_01, "trial_sequence") # all columns in @outcome_data@data are kept and w column is added expect_equal( colnames(fm_01@outcome_data@data), c(colnames(trial_itt_expanded@outcome_data@data), "w") ) # fit_msm saves result into @outcome_model@fitted expect_class(fm_01@outcome_model@fitted@model$model, "glm") # show method works expect_snapshot(fm_01, transform = drop_path) unlink(trial_itt_dir, recursive = TRUE) }) test_that("fit_msm works with weight functions", { set.seed(2024) trial_itt_dir <- withr::local_tempdir(pattern = "all", tempdir(TRUE)) trial_itt <- trial_sequence(estimand = "ITT") |> set_data( data = data_censored, id = "id", period = "period", treatment = "treatment", outcome = "outcome", eligible = "eligible" ) |> set_censor_weight_model( censor_event = "censored", numerator = ~ x1 + x2 + x3, denominator = ~x2, pool_models = "numerator", model_fitter = stats_glm_logit(save_path = file.path(trial_itt_dir, "switch_models")) ) |> calculate_weights() |> set_outcome_model( adjustment_terms = ~ x1 + x2, followup_time_terms = ~followup_time, trial_period_terms = ~1 ) trial_itt_expanded <- set_expansion_options( trial_itt, output = save_to_csv(file.path(trial_itt_dir, "trial_csvs")), chunk_size = 500 ) |> expand_trials() |> load_expanded_data() # fit_msm returns a trial_sequence object expect_warning( fitted_object <- fit_msm(trial_itt_expanded, modify_weights = function(x) pmin(x, 1)), "non-integer" ) expected <- pmin(fitted_object@outcome_data@data$weight * fitted_object@outcome_data@data$sample_weight, 1) expect_equal(fitted_object@outcome_data@data$w, expected) # no weights, ie weights == 1 fitted_no_weights <- fit_msm(trial_itt_expanded, weight_cols = NULL) fitted_all_ones_weights <- fit_msm(trial_itt_expanded, modify_weights = function(w) rep(1, length(w))) expect_equal( fitted_no_weights@outcome_model@fitted@summary$tidy, fitted_all_ones_weights@outcome_model@fitted@summary$tidy ) })