# General ---- library(TreatmentPatterns) library(testthat) library(dplyr) # Tests ---- test_that("void", { expect_error( TreatmentPatterns::export() ) }) test_that("empty treatmentHistory table", { tempDirLocal <- file.path(tempdir(), "output") localAndromeda <- Andromeda::andromeda() localAndromeda$treatmentHistory <- data.frame( personId = numeric(0) ) expect_message( export(localAndromeda, outputPath = tempDirLocal), "Treatment History table is empty. Nothing to export." ) }) # CohortGenerator ---- test_that("outputPath", { skip_on_ci() skip_on_cran() globals <- generateCohortTableCG() andromeda <- TreatmentPatterns::computePathways( cohorts = globals$cohorts, cohortTableName = globals$cohortTableName, connectionDetails = globals$connectionDetails, cdmSchema = globals$cdmSchema, resultSchema = globals$resultSchema) ## file.path(tempDirCG) ---- tempDirLocal <- file.path(tempdir(), "output") export(andromeda, outputPath = tempDirLocal) expect_true( file.exists(file.path(tempDirLocal, "treatmentPathways.csv")) ) expect_true( file.exists(file.path(tempDirLocal, "summaryStatsTherapyDuration.csv")) ) expect_true( file.exists(file.path(tempDirLocal, "countsYear.csv")) ) expect_true( file.exists(file.path(tempDirLocal, "countsAge.csv")) ) expect_true( file.exists(file.path(tempDirLocal, "countsSex.csv")) ) ## 3 ---- expect_error( TreatmentPatterns::export(andromeda, outputPath = 3), "Variable 'outputPath': No path provided" ) Andromeda::close(andromeda) }) test_that("ageWindow", { skip_on_ci() skip_on_cran() globals <- generateCohortTableCG() andromeda <- TreatmentPatterns::computePathways( cohorts = globals$cohorts, cohortTableName = globals$cohortTableName, connectionDetails = globals$connectionDetails, cdmSchema = globals$cdmSchema, resultSchema = globals$resultSchema ) tempDirLocal <- file.path(tempdir(), "output") ## 10 ---- expect_message( export( andromeda = andromeda, outputPath = tempDirLocal, ageWindow = 10 ) ) treatmentPathways <- read.csv(file.path(tempDirLocal, "treatmentPathways.csv")) expect_true( all(c("0-10", "10-20", "20-30", "30-40", "40-50", "all") %in% treatmentPathways$age)) ## c(0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 150) ---- expect_message( export( andromeda = andromeda, outputPath = tempDirLocal, ageWindow = c(0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 150) ) ) treatmentPathways <- read.csv(file.path(tempDirLocal, "treatmentPathways.csv")) expect_true(all( c("0-2", "2-4", "4-6", "6-8", "8-10", "10-12", "12-14", "14-16", "16-18", "18-150", "all") %in% treatmentPathways$age )) Andromeda::close(andromeda) }) test_that("minCellCount", { skip_on_ci() skip_on_cran() globals <- generateCohortTableCG() andromeda <- TreatmentPatterns::computePathways( cohorts = globals$cohorts, cohortTableName = globals$cohortTableName, connectionDetails = globals$connectionDetails, cdmSchema = globals$cdmSchema, resultSchema = globals$resultSchema ) tempDirLocal <- file.path(tempdir(), "output") ## 10 ---- expect_message( export( andromeda = andromeda, outputPath = tempDirLocal, minCellCount = 10, censorType = "remove" ), "Removing \\d+ pathways with a frequency <10." ) treatmentPathways <- read.csv(file.path(tempDirLocal, "treatmentPathways.csv")) expect_equal(min(treatmentPathways$freq), 10) ## "10" ---- expect_error( export( andromeda = andromeda, outputPath = tempDirLocal, minCellCount = "10" ) ) Andromeda::close(andromeda) }) test_that("archiveName", { skip_on_ci() skip_on_cran() globals <- generateCohortTableCG() andromeda <- TreatmentPatterns::computePathways( cohorts = globals$cohorts, cohortTableName = globals$cohortTableName, connectionDetails = globals$connectionDetails, cdmSchema = globals$cdmSchema, resultSchema = globals$resultSchema ) tempDirLocal <- file.path(tempdir(), "output") ## "output.zip" ---- expect_message( export( andromeda = andromeda, outputPath = tempDirLocal, archiveName = "output.zip" ) ) expect_true( file.exists(file.path(tempDirLocal, "output.zip")) ) ## 3 ---- expect_error( export( andromeda = andromeda, outputPath = tempDirLocal, archiveName = 3 ) ) Andromeda::close(andromeda) }) test_that("censorType", { skip_on_ci() skip_on_cran() globals <- generateCohortTableCG() andromeda <- TreatmentPatterns::computePathways( cohorts = globals$cohorts, cohortTableName = globals$cohortTableName, connectionDetails = globals$connectionDetails, cdmSchema = globals$cdmSchema, resultSchema = globals$resultSchema ) tempDirLocal <- file.path(tempdir(), "output") ## "remove" ---- expect_message( export( andromeda = andromeda, outputPath = tempDirLocal, minCellCount = 10, censorType = "remove" ), "Removing \\d+ pathways with a frequency <10." ) treatmentPathways <- read.csv(file.path(tempDirLocal, "treatmentPathways.csv")) expect_equal(min(treatmentPathways$freq), 10) ## "minCellCount" ---- expect_message( export( andromeda = andromeda, outputPath = tempDirLocal, minCellCount = 10, censorType = "minCellCount" ), "Censoring \\d+ pathways with a frequency <10 to 10." ) treatmentPathways <- read.csv(file.path(tempDirLocal, "treatmentPathways.csv")) expect_equal(min(treatmentPathways$freq), 10) ## "mean" ---- expect_message( export( andromeda = andromeda, outputPath = tempDirLocal, minCellCount = 10, censorType = "mean" ), "Censoring \\d+ pathways with a frequency <10 to mean." ) treatmentPathways <- read.csv(file.path(tempDirLocal, "treatmentPathways.csv")) expect_equal(min(treatmentPathways$freq), 1) ## "stuff" ---- expect_error( export( andromeda = andromeda, outputPath = tempDirLocal, censorType = "Stuff" ) ) Andromeda::close(andromeda) }) # CDMConnector ---- test_that("outputPath", { skip_on_cran() globals <- generateCohortTableCDMC() andromeda <- TreatmentPatterns::computePathways( cohorts = globals$cohorts, cohortTableName = globals$cohortTableName, cdm = globals$cdm ) tempDirLocal <- file.path(tempdir(), "output") export(andromeda, outputPath = tempDirLocal) expect_true( file.exists(file.path(tempDirLocal, "treatmentPathways.csv")) ) expect_true( file.exists(file.path(tempDirLocal, "summaryStatsTherapyDuration.csv")) ) expect_true( file.exists(file.path(tempDirLocal, "countsYear.csv")) ) expect_true( file.exists(file.path(tempDirLocal, "countsAge.csv")) ) expect_true( file.exists(file.path(tempDirLocal, "countsSex.csv")) ) ## 3 ---- expect_error( export(andromeda, outputPath = 3), "Variable 'outputPath': No path provided" ) Andromeda::close(andromeda) DBI::dbDisconnect(globals$con, shutdown = TRUE) }) test_that("ageWindow", { skip_on_cran() globals <- generateCohortTableCDMC() andromeda <- TreatmentPatterns::computePathways( cohorts = globals$cohorts, cohortTableName = globals$cohortTableName, cdm = globals$cdm ) tempDirLocal <- file.path(tempdir(), "output") ## 10 ---- expect_message( export( andromeda = andromeda, outputPath = tempDirLocal, ageWindow = 10 ) ) treatmentPathways <- read.csv(file.path(tempDirLocal, "treatmentPathways.csv")) expect_true(all(c("0-10", "10-20", "all") %in% treatmentPathways$age)) ## c(0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 150) ---- expect_message( export( andromeda = andromeda, outputPath = tempDirLocal, ageWindow = c(0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 150) ) ) treatmentPathways <- read.csv(file.path(tempDirLocal, "treatmentPathways.csv")) expect_true(all( c("0-2", "2-4", "4-6", "6-8", "8-10", "10-12", "12-14", "14-16", "16-18", "18-150", "all") %in% treatmentPathways$age )) Andromeda::close(andromeda) DBI::dbDisconnect(globals$con, shutdown = TRUE) }) test_that("minCellCount", { skip_on_cran() globals <- generateCohortTableCDMC() andromeda <- TreatmentPatterns::computePathways( cohorts = globals$cohorts, cohortTableName = globals$cohortTableName, cdm = globals$cdm ) tempDirLocal <- file.path(tempdir(), "output") ## 10 ---- expect_message( export( andromeda = andromeda, outputPath = tempDirLocal, minCellCount = 10, censorType = "remove" ), "Removing \\d+ pathways with a frequency <10." ) treatmentPathways <- read.csv(file.path(tempDirLocal, "treatmentPathways.csv")) expect_equal(min(treatmentPathways$freq), 10) ## "10" ---- expect_error( export( andromeda = andromeda, outputPath = tempDirLocal, minCellCount = "10" ) ) Andromeda::close(andromeda) DBI::dbDisconnect(globals$con, shutdown = TRUE) }) test_that("archiveName", { skip_on_cran() globals <- generateCohortTableCDMC() andromeda <- TreatmentPatterns::computePathways( cohorts = globals$cohorts, cohortTableName = globals$cohortTableName, cdm = globals$cdm ) tempDirLocal <- file.path(tempdir(), "output") ## "output.zip" ---- expect_message( export( andromeda = andromeda, outputPath = tempDirLocal, archiveName = "output.zip" ) ) expect_true( file.exists(file.path(tempDirLocal, "output.zip")) ) ## 3 ---- expect_error( export( andromeda = andromeda, outputPath = tempDirLocal, archiveName = 3 ) ) Andromeda::close(andromeda) DBI::dbDisconnect(globals$con, shutdown = TRUE) }) test_that("censorType", { skip_on_cran() globals <- generateCohortTableCDMC() andromeda <- TreatmentPatterns::computePathways( cohorts = globals$cohorts, cohortTableName = globals$cohortTableName, cdm = globals$cdm ) tempDirLocal <- file.path(tempdir(), "output") ## "remove" ---- expect_message( export( andromeda = andromeda, outputPath = tempDirLocal, minCellCount = 10, censorType = "remove" ), "Removing \\d+ pathways with a frequency <10." ) treatmentPathways <- read.csv(file.path(tempDirLocal, "treatmentPathways.csv")) expect_equal(min(treatmentPathways$freq), 10) ## "minCellCount" ---- expect_message( export( andromeda = andromeda, outputPath = tempDirLocal, minCellCount = 10, censorType = "minCellCount" ), "Censoring \\d+ pathways with a frequency <10 to 10." ) treatmentPathways <- read.csv(file.path(tempDirLocal, "treatmentPathways.csv")) expect_equal(min(treatmentPathways$freq), 10) ## "mean" ---- expect_message( export( andromeda = andromeda, outputPath = tempDirLocal, minCellCount = 10, censorType = "mean" ), "Censoring \\d+ pathways with a frequency <10 to mean." ) treatmentPathways <- read.csv(file.path(tempDirLocal, "treatmentPathways.csv")) expect_equal(min(treatmentPathways$freq), 1) ## "stuff" ---- expect_error( export( andromeda = andromeda, outputPath = tempDirLocal, censorType = "Stuff" ) ) Andromeda::close(andromeda) DBI::dbDisconnect(globals$con, shutdown = TRUE) }) test_that("counts", { skip_on_cran() globals <- generateCohortTableCDMC() andromeda <- TreatmentPatterns::computePathways( cohorts = globals$cohorts, cohortTableName = globals$cohortTableName, cdm = globals$cdm ) tempDirLocal <- file.path(tempdir(), "output") ## "remove" ---- TreatmentPatterns::export( andromeda = andromeda, outputPath = tempDirLocal, minCellCount = 1, ageWindow = c(0, 18, 150) ) treatmentPathways <- read.csv(file.path(tempDirLocal, "treatmentPathways.csv")) totalAll <- treatmentPathways %>% dplyr::filter(.data$age == "all", .data$sex == "all", indexYear == "all") %>% summarize(sum(freq)) %>% pull() # all == male + female sexes <- unique(treatmentPathways$sex) sexes <- sexes[sexes != "all"] totalSexes <- lapply(sexes, function(sexGroup) { treatmentPathways %>% dplyr::filter(.data$age == "all", .data$sex == sexGroup, indexYear == "all") %>% summarize(sum(freq)) %>% pull() }) %>% unlist() %>% sum() expect_identical(totalAll, totalSexes) # Age group ages <- unique(treatmentPathways$age) ages <- ages[ages != "all"] %>% unlist() totalAges <- lapply(ages, function(ageGroup) { treatmentPathways %>% dplyr::filter(.data$age == ageGroup, .data$sex == "all", indexYear == "all") %>% summarize(sum(freq)) %>% pull() }) %>% unlist() %>% sum() expect_identical(totalAll, totalAges) # Years years <- unique(treatmentPathways$indexYear) years <- years[years != "all"] totalYears <- lapply(years, function(year) { treatmentPathways %>% dplyr::filter(.data$age == "all", .data$sex == "all", indexYear == year) %>% summarize(sum(freq)) %>% pull() }) %>% unlist() %>% sum() expect_identical(totalAll, totalYears) })