formula = "psych_well ~ gender + age + socioec_status + depression" hyper_nn_tune_list = list( learn_rate = c(-2, -1), hidden_units = c(3,10) ) analysis_object <- preprocessing(df = sim_data, formula = formula, task = "regression") analysis_object <- build_model(analysis_object = analysis_object, model_name = "Random Forest", hyperparameters = list(mtry = 3)) analysis_object <- fine_tuning(analysis_object = analysis_object, tuner = "Bayesian Optimization", metrics = "rmse", verbose = F) # test_that("show_results works properly regression", { # # analysis_object <- show_results(analysis_object = analysis_object) # # expect_equal(analysis_object$fit_summary$RMSE, 13.68476, tolerance = 1e-2) # # # }) test_that("show_results wrong plots", { expect_error(show_results(analysis_object = analysis_object, confusion_matrix = T)) }) test_that("show_results wrong new_data", { expect_error(show_results(analysis_object = analysis_object, new_data = "validation")) })