# test_that("PFI works properly regression", { # # formula = "psych_well ~ gender + age + socioec_status + depression" # # hyper_nn_tune_list = list( # learn_rate = c(-2, -1), # hidden_units = c(3,10) # ) # # set.seed(123) # # analysis_object <- preprocessing(df = sim_data, formula = formula, task = "regression") # # analysis_object <- build_model(analysis_object = analysis_object, # model_name = "Neural Network", # hyperparameters = hyper_nn_tune_list) # # analysis_object <- fine_tuning(analysis_object = analysis_object, # tuner = "Bayesian Optimization", # metrics = "rmse", # verbose = F) # # analysis_object <- sensitivity_analysis(analysis_object, methods = c("PFI", "SHAP", # "Integrated Gradients", "Olden")) # # pfi <- analysis_object$sensitivity_analysis$PFI # shap <- analysis_object$sensitivity_analysis$SHAP # int_grad <- analysis_object$sensitivity_analysis$IntegratedGradients # olden <- analysis_object$sensitivity_analysis$Olden # # expect_equal(pfi$Importance[[1]], 17.70069, tolerance = 1e-1) # expect_equal(shap$depression[1], 18.16909, tolerance = 1e-1) # expect_equal(int_grad$depression[1], 0.82378044, tolerance = 1e-1) # expect_equal(olden$depression[1], -0.6505, tolerance = 1e-1) # # # })