library(TauStar) context("Testing the tStar function.") # The Bergsma and Dassios (2014) 'a' function. a = function(z) { sign(round(abs(z[1] - z[2]) + abs(z[3] - z[4]) - abs(z[1] - z[3]) - abs(z[2] - z[4]), 10)) } # An extremely naive implementation of tStar just to check things work # correctly in general. tStarSlow = function(x, y, vStat = F) { if (length(x) != length(y) || length(x) < 4) { stop("Input to tStarSlow of invalid length.") } n = length(x) val = 0 for (i in 1:n) { for (j in 1:n) { for (k in 1:n) { for (l in 1:n) { inds = c(i,j,k,l) if(length(unique(inds)) == 4 || vStat == T) { val = val + a(x[inds]) * a(y[inds]) } } } } } if (vStat) { return(val / n^4) } else { return(val / (n * (n - 1) * (n - 2) * (n - 3))) } } # A distribution that is a mixture of continuous and discrete, used to check # the tStar algorithm works on such input. poissonGaussMix = function(n) { poisOrGaus = sample(c(0,1), n, replace=T) return(rpois(n, 5) * poisOrGaus + rnorm(n) * (1 - poisOrGaus)) } test_that("tStar implementations agree", { set.seed(283721) reps = 3 m = 6 # Just a sanity check that the R naive version agrees with the C++ naive # version for (i in reps) { x <- rnorm(m) y <- rnorm(m) expect_equal(tStarSlow(x, y), tStar(x, y, slow = T)) expect_equal(tStarSlow(x, y, T), tStar(x, y, T, slow = T)) x <- rpois(m, 5) y <- rpois(m, 5) expect_equal(tStarSlow(x, y), tStar(x, y, slow = T)) expect_equal(tStarSlow(x, y, T), tStar(x, y, T, slow = T)) x <- rnorm(m) y <- rpois(m, 5) expect_equal(tStarSlow(x, y), tStar(x, y, slow = T)) expect_equal(tStarSlow(x, y, T), tStar(x, y, T, slow = T)) x <- poissonGaussMix(m) y <- poissonGaussMix(m) expect_equal(tStarSlow(x, y), tStar(x, y, slow = T)) expect_equal(tStarSlow(x, y, T), tStar(x, y, T, slow = T)) } m = 30 reps = 10 methods = c("heller", "weihs", "naive") areAllEq = function(x, y, vstat) { vals = numeric(length(methods)) for (i in 1:length(methods)) { vals[i] = tStar(x, y, method = methods[i], vStatistic = vstat) } for (i in 1:(length(methods) - 1)) { expect_equal(vals[i], vals[i + 1]) } } for (i in 1:reps) { x <- rnorm(m) y <- rnorm(m) areAllEq(x, y, F) areAllEq(x, y, T) x <- rpois(m, 5) y <- rpois(m, 5) areAllEq(x, y, F) areAllEq(x, y, T) x <- rnorm(m) y <- rpois(m, 5) areAllEq(x, y, F) areAllEq(x, y, T) x <- poissonGaussMix(m) y <- poissonGaussMix(m) areAllEq(x, y, F) areAllEq(x, y, T) } x = rnorm(100) y = rnorm(100) ts = tStar(x, y) tvs = tStar(x, y, T) expect_equal(ts, tStar(x, y, slow = T)) expect_true(abs(tStar(x, y, resample = T, sampleSize = 10, numResamples = 10000) - ts) < 2*10^-3) }) test_that("tStar errors on bad input", { x <- list(1,2,3,4) y <- c(1,2,3,4) expect_error(tStar(x, y)) expect_error(tStar(numeric(0), numeric(0))) for(i in 1:3) { expect_error(tStar(1:i, 1:i)) } expect_error(tStar(1:10, 1:9)) expect_error(tStar(1:9, 1:10)) expect_error(tStar(1:10, 1:10, resample = T, slow = T)) expect_error(tStar(1:10, 1:10, resample = T, numResamples = -1)) expect_error(tStar(1:10, 1:10, resample = T, sampleSize = -1)) expect_error(tStar(1:10, 1:10, vStatistic = T, resample = T)) })