test_that("diagram_mds detects incorrect parameters correctly",{ D <- data.frame(dimension = c(0),birth = c(0),death = c(1)) expect_error(diagram_mds(diagrams = list(D,D,"D"),num_workers = 2),"Diagrams") expect_error(diagram_mds(diagrams = list(),num_workers = 2),"2") expect_error(diagram_mds(diagrams = list(D,D,D),distance = NaN,num_workers = 2),"distance") expect_error(diagram_mds(diagrams = list(D,D,D),distance = "fisher",sigma = NULL,num_workers = 2),"sigma") expect_error(diagram_mds(diagrams = list(D,D,D),p = NaN,num_workers = 2),"p") expect_error(diagram_mds(diagrams = list(D,D,D),k = -1,num_workers = 2),"k") }) test_that("diagram_mds is computing correctly",{ D1 <- data.frame(dimension = 0,birth = 2,death = 3) D2 <- data.frame(dimension = 0,birth = 2,death = 3.1) D3 <- data.frame(dimension = 0,birth = c(2,5),death = c(3.1,6)) d12 <- diagram_distance(D1,D2,dim = 0) # 2-wasserstein d13 <- diagram_distance(D1,D3,dim = 0) d23 <- diagram_distance(D2,D3,dim = 0) D <- matrix(data = c(0,d12,d13,d12,0,d23,d13,d23,0),byrow = T,nrow = 3,ncol = 3)^2 D <- scale(D,center = T,scale = F) D <- t(scale(t(D),center = T,scale = F)) S <- -D/2 ev <- eigen(S) embedding <- -1*t(diag(sqrt(ev$values[1:2])) %*% t(ev$vectors[,1:2])) dimnames(embedding) <- list(NULL,NULL) dmds <- diagram_mds(diagrams = list(D1,D2,D3),num_workers = 2) if(embedding[1,1] < 0) { embedding[,1] <- embedding[,1]/-1 } if(dmds[1,1] < 0) { dmds[,1] <- dmds[,1]/-1 } if(embedding[1,2] < 0) { embedding[,2] <- embedding[,2]/-1 } if(dmds[1,2] < 0) { dmds[,2] <- dmds[,2]/-1 } expect_equal((abs(dmds[1,1])-abs(embedding[1,1]))+(abs(dmds[2,1])-abs(embedding[2,1]))+(abs(dmds[3,1])-abs(embedding[3,1])) + (abs(dmds[1,2])-abs(embedding[1,2]))+(abs(dmds[2,2])-abs(embedding[2,2]))+(abs(dmds[3,2])-abs(embedding[3,2])),0) }) # test_that("diagram_mds can accept inputs from TDA, TDAstats and diagram_to_df",{ # # skip_if_not_installed("TDA") # skip_if_not_installed("TDAstats") # # D1 = TDA::ripsDiag(data.frame(x = runif(50,0,1),y = runif(50,0,1)),maxscale = 1,maxdimension = 1) # D2 = TDA::alphaComplexDiag(data.frame(x = runif(50,0,1),y = runif(50,0,1)),maxdimension = 1) # D3 = TDA::ripsDiag(data.frame(x = runif(50,0,1),y = runif(50,0,1)),maxscale = 1,maxdimension = 1,library = "dionysus",location = T) # D4 = TDAstats::calculate_homology(data.frame(x = runif(50,0,1),y = runif(50,0,1)),threshold = 1) # expect_type(diagram_mds(diagrams = list(D1,D2,D3,D4),dim = 1,num_workers = 2),"double") # expect_error(diagram_mds(diagrams = list(D1,D2,D3,D4),dim = 0,num_workers = 2),"Inf") # # }) # test_that("diagram_mds can take distance matrix input",{ # # skip_if_not_installed("TDA") # skip_if_not_installed("TDAstats") # # D1 = TDA::ripsDiag(data.frame(x = runif(50,0,1),y = runif(50,0,1)),maxscale = 1,maxdimension = 1) # D2 = TDA::alphaComplexDiag(data.frame(x = runif(50,0,1),y = runif(50,0,1)),maxdimension = 1) # D3 = TDA::ripsDiag(data.frame(x = runif(50,0,1),y = runif(50,0,1)),maxscale = 1,maxdimension = 1,library = "dionysus",location = T) # D4 = TDAstats::calculate_homology(data.frame(x = runif(50,0,1),y = runif(50,0,1)),threshold = 1) # D = distance_matrix(list(D1,D2,D3,D4),dim = 1,num_workers = 2) # expect_type(diagram_mds(D = D,dim = 1,num_workers = 2),"double") # # })