empty_directory <- function(x) { unlink(x, recursive = TRUE, force = TRUE) dir.create(x) } test_with_dir <- function(desc, ...) { withr <- TAD:::load_package("withr") new <- tempfile() empty_directory(new) withr$with_dir( new = new, code = { tmp <- capture.output( testthat::test_that(desc = desc, ...) ) } ) invisible(tmp) } datasets <- list( good1 = list( params = list( weights = TAD::AB[, 5:102], weights_factor = TAD::AB[, c("Year", "Plot", "Treatment", "Bloc")], trait_data = log(TAD::trait[["SLA"]]), aggregation_factor_name = c("Year", "Bloc"), statistics_factor_name = c("Treatment"), regenerate_abundance_df = TRUE, regenerate_weighted_moments_df = TRUE, regenerate_stat_per_obs_df = TRUE, regenerate_stat_per_rand_df = TRUE, randomization_number = 20, seed = 1312, significativity_threshold = c(0.05, 0.95), lin_mod = "lm", slope_distance = TAD::SKEW_UNIFORM_SLOPE_DISTANCE, intercept_distance = TAD::SKEW_UNIFORM_INTERCEPT_DISTANCE, abundance_file = NULL, weighted_moments_file = NULL, stat_per_obs_file = NULL, stat_per_rand_file = NULL, stat_skr_param_file = NULL ), weights = data.frame(sp1 = c(1, 0), sp2 = c(2, 8), sp3 = c(0, 2)), aggreg_factor = data.frame(plot = c("plot1", "plot2")), randomization_number = 3, generate_random_matrix_result = list( data.frame( number = as.integer(c(0, 0, 1, 1, 2, 2, 3, 3)), index1 = as.numeric(c(1, 0, 1, 0, 2, 0, 2, 0)), index2 = as.numeric(c(2, 8, 2, 2, 1, 2, 1, 2)), index3 = as.numeric(c(0, 2, 0, 8, 0, 8, 0, 8)) ), data.frame( number = as.integer(c(0, 0, 1, 1, 2, 2, 3, 3)), index1 = as.numeric(c(1, 0, 2, 0, 1, 0, 1, 0)), index2 = as.numeric(c(2, 8, 1, 8, 2, 8, 2, 2)), index3 = as.numeric(c(0, 2, 0, 2, 0, 2, 0, 8)) ), data.frame( number = as.integer(c(0, 0, 1, 1, 2, 2, 3, 3)), index1 = as.numeric(c(1, 0, 1, 0, 1, 0, 1, 0)), index2 = as.numeric(c(2, 8, 2, 8, 2, 8, 2, 2)), index3 = as.numeric(c(0, 2, 0, 2, 0, 2, 0, 8)) ), data.frame( number = as.integer(c(0, 0, 1, 1, 2, 2, 3, 3)), index1 = as.numeric(c(1, 0, 2, 0, 1, 0, 2, 0)), index2 = as.numeric(c(2, 8, 1, 8, 2, 8, 1, 2)), index3 = as.numeric(c(0, 2, 0, 2, 0, 2, 0, 8)) ), data.frame( number = as.integer(c(0, 0, 1, 1, 2, 2, 3, 3)), index1 = as.numeric(c(1, 0, 2, 0, 2, 0, 2, 0)), index2 = as.numeric(c(2, 8, 1, 8, 1, 2, 1, 2)), index3 = as.numeric(c(0, 2, 0, 2, 0, 8, 0, 8)) ), data.frame( number = as.integer(c(0, 0, 1, 1, 2, 2, 3, 3)), index1 = as.numeric(c(1, 0, 1, 0, 1, 0, 2, 0)), index2 = as.numeric(c(2, 8, 2, 8, 2, 2, 1, 2)), index3 = as.numeric(c(0, 2, 0, 2, 0, 8, 0, 8)) ), data.frame( number = as.integer(c(0, 0, 1, 1, 2, 2, 3, 3)), index1 = as.numeric(c(1, 0, 2, 0, 1, 0, 1, 0)), index2 = as.numeric(c(2, 8, 1, 8, 2, 2, 2, 2)), index3 = as.numeric(c(0, 2, 0, 2, 0, 8, 0, 8)) ), data.frame( number = as.integer(c(0, 0, 1, 1, 2, 2, 3, 3)), index1 = as.numeric(c(1, 0, 2, 0, 2, 0, 2, 0)), index2 = as.numeric(c(2, 8, 1, 2, 1, 8, 1, 8)), index3 = as.numeric(c(0, 2, 0, 8, 0, 2, 0, 2)) ), data.frame( number = as.integer(c(0, 0, 1, 1, 2, 2, 3, 3)), index1 = as.numeric(c(1, 0, 2, 0, 1, 0, 1, 0)), index2 = as.numeric(c(2, 8, 1, 8, 2, 8, 2, 8)), index3 = as.numeric(c(0, 2, 0, 2, 0, 2, 0, 2)) ), data.frame( number = as.integer(c(0, 0, 1, 1, 2, 2, 3, 3)), index1 = as.numeric(c(1, 0, 1, 0, 1, 0, 1, 0)), index2 = as.numeric(c(2, 8, 2, 8, 2, 8, 2, 8)), index3 = as.numeric(c(0, 2, 0, 2, 0, 2, 0, 2)) ) ) ), bad1 = list( weights1 = data.frame(sp1 = c(1, 0), sp2 = c(2, 8), sp3 = c(0, 2)), aggreg_factor = data.frame(plot = c("plot1")) ), good2 = list( param = list(), results = list( abundance_df = TAD::abundance_dataframe, filtering = TAD::filtered_abundances, weighted_moments_dataframe = TAD::weighted_moments_dataframe, stat_per_obs_dataframe = TAD::stat_per_obs_dataframe, stat_per_rand_dataframe = TAD::stat_per_rand_dataframe, skr_ses_dataframe = TAD::skr_ses_dataframe ) ) ) get_bad_parameters <- function(...) { bad_params <- list(...) good_params <- datasets$good1$params for (bad_param in names(bad_params)) { good_params[[bad_param]] <- bad_params[[bad_param]] } return(good_params) } datasets$good2$param$abundance_df <- list( weights = (weights <- TAD::AB[, 5:102]), abundance_file = (abundance_file <- NULL), weights_factor = ( weights_factor <- TAD::AB[, c("Year", "Plot", "Treatment", "Bloc")] ), aggregation_factor_name = c("Year", "Bloc"), regenerate_abundance_df = TRUE, randomization_number = (randomization_number <- 20), seed = 1312 ) datasets$good2$param$filtering <- list( abundance_df = datasets$good2$results$abundance_df, weights = weights, weights_factor = weights_factor, trait_data = log(TAD::trait[["SLA"]]) ) datasets$good2$param$weighted_moments <- list( weights_factor = datasets$good2$results$filtering$weights_factor, trait_data = datasets$good2$results$filtering$trait_data, weighted_moments_file = NULL, regenerate_weighted_moments_df = TRUE, abundance_df = datasets$good2$results$filtering$abundance_df, randomization_number = randomization_number, slope_distance = TAD::SKEW_UNIFORM_SLOPE_DISTANCE, intercept_distance = TAD::SKEW_UNIFORM_INTERCEPT_DISTANCE ) datasets$good2$param$stat_per_obs_dataframe <- list( weights_factor = datasets$good2$results$filtering$weights_factor, stat_per_obs_file = NULL, regenerate_stat_per_obs_df = TRUE, weighted_moments = datasets$good2$results$weighted_moments, randomization_number = randomization_number, significativity_threshold = (significativity_threshold <- c(0.05, 0.95)) ) datasets$good2$param$stat_per_rand_dataframe <- list( weights = datasets$good2$results$filtering$weights, stat_per_rand_file = NULL, regenerate_stat_per_rand_df = TRUE, statistics_factor_name = (statistics_factor_name <- c("Treatment")), weights_factor = datasets$good2$results$filtering$weights_factor, randomization_number = randomization_number, weighted_moments = datasets$good2$results$weighted_moments, abundance_df = datasets$good2$results$filtering$abundance_df, lin_mod = "lm" ) datasets$good2$param$skr_ses_dataframe <- list( statistics_factor_name = statistics_factor_name, significativity_threshold = significativity_threshold, skr_param = datasets$good2$results$stat_per_rand_dataframe, stat_skr_param_file = NULL )