context("Evaluation and metrics: evalMetrics.R") skip_if_not(.checkPythonDependencies(alert = "none")) # simulating data set.seed(123) sce <- SingleCellExperiment( assays = list( counts = matrix( stats::rpois(100, lambda = 5), nrow = 40, ncol = 30, dimnames = list(paste0("Gene", seq(40)), paste0("RHC", seq(30))) ) ), colData = data.frame( Cell_ID = paste0("RHC", seq(30)), Cell_Type = sample(x = paste0("CellType", seq(4)), size = 30, replace = TRUE) ), rowData = data.frame( Gene_ID = paste0("Gene", seq(40)) ) ) simSpatialExperiment <- function(n = 1) { sim.samples <- function() { ngenes <- sample(3:40, size = 1) ncells <- sample(3:40, size = 1) counts <- matrix( rpois(ngenes * ncells, lambda = 5), ncol = ncells, dimnames = list(paste0("Gene", seq(ngenes)), paste0("Spot", seq(ncells))) ) coordinates <- matrix( rep(c(1, 2), ncells), ncol = 2 ) return( SpatialExperiment::SpatialExperiment( assays = list(counts = as.matrix(counts)), rowData = data.frame(Gene_ID = paste0("Gene", seq(ngenes))), colData = data.frame(Cell_ID = paste0("Spot", seq(ncells))), spatialCoords = coordinates ) ) } return(replicate(n = n, expr = sim.samples())) } SDDLS <- createSpatialDDLSobject( sc.data = sce, sc.cell.ID.column = "Cell_ID", sc.gene.ID.column = "Gene_ID", st.data = simSpatialExperiment(n = 10), st.spot.ID.column = "Cell_ID", st.gene.ID.column = "Gene_ID", sc.filt.genes.cluster = FALSE ) SDDLS <- estimateZinbwaveParams( object = SDDLS, cell.type.column = "Cell_Type", cell.ID.column = "Cell_ID", gene.ID.column = "Gene_ID", verbose = FALSE ) # object completed SDDLSComp <- simSCProfiles( object = SDDLS, cell.ID.column = "Cell_ID", cell.type.column = "Cell_Type", n.cells = 15, verbose = FALSE ) SDDLSComp <- genMixedCellProp( object = SDDLSComp, cell.ID.column = "Cell_ID", cell.type.column = "Cell_Type", num.sim.spots = 100, verbose = FALSE ) SDDLSComp <- simMixedProfiles(SDDLSComp, verbose = FALSE) SDDLSComp <- trainDeconvModel( object = SDDLSComp, batch.size = 20, verbose = FALSE ) SDDLSComp <- suppressWarnings(calculateEvalMetrics(SDDLSComp)) # calculateEvalMetrics test_that( desc = "calculateEvalMetrics function", code = { # incorrect object: no trained object expect_error( calculateEvalMetrics(object = SDDLS), regexp = "The provided object does not have a trained model for evaluation" ) # incorrect object: no prob.cell.types slot SDDLSCompBad <- SDDLSComp prob.cell.types(SDDLSCompBad) <- NULL expect_error( calculateEvalMetrics(object = SDDLSCompBad), regexp = "The provided object does not contain actual cell proportions in 'prob.cell.types' slot" ) # check if results are properly stored: only MAE SDDLSComp <- calculateEvalMetrics(object = SDDLSComp) expect_type(trained.model(SDDLSComp) %>% test.deconv.metrics(), type = "list") expect_identical( names(trained.model(SDDLSComp) %>% test.deconv.metrics()), c("raw", "allData", "filData") ) expect_true( all(lapply( trained.model(SDDLSComp) %>% test.deconv.metrics(), names )$allData == c("MAE", "MSE")) ) expect_true( all(lapply( trained.model(SDDLSComp) %>% test.deconv.metrics(), names )$filData == c("MAE", "MSE")) ) # aggregated results expect_identical( names(trained.model(SDDLSComp)@test.deconv.metrics[["allData"]][["MAE"]]), c("Sample", "CellType", "pBin", "nCellTypes") ) expect_identical( names(trained.model(SDDLSComp)@test.deconv.metrics[["filData"]][["MAE"]]), c("Sample", "CellType", "pBin", "nCellTypes") ) # both metrics: MAE and MSE SDDLSComp <- calculateEvalMetrics(object = SDDLSComp) expect_type(trained.model(SDDLSComp) %>% test.deconv.metrics(), type = "list") expect_identical( names(trained.model(SDDLSComp) %>% test.deconv.metrics()), c("raw", "allData", "filData") ) expect_identical( lapply( trained.model(SDDLSComp) %>% test.deconv.metrics(), names )$allData, c("MAE", "MSE") ) expect_identical( lapply( trained.model(SDDLSComp) %>% test.deconv.metrics(), names )$filData, c("MAE", "MSE") ) # aggregated results expect_identical( lapply(trained.model(SDDLSComp)@test.deconv.metrics[["allData"]], names), list( MAE = c("Sample", "CellType", "pBin", "nCellTypes"), MSE = c("Sample", "CellType", "pBin", "nCellTypes") ) ) expect_identical( lapply(trained.model(SDDLSComp)@test.deconv.metrics[["filData"]], names), list( MAE = c("Sample", "CellType", "pBin", "nCellTypes"), MSE = c("Sample", "CellType", "pBin", "nCellTypes") ) ) } ) # distErrorPlot test_that( desc = "distErrorPlot function", code = { # incorrect object: no evaluation metrics expect_error( distErrorPlot(object = SDDLS, error = "AbsErr"), regexp = "The provided object does not contain evaluation metrics. Use 'calculateEvalMetrics' function" ) # incorrect error parameter expect_error( distErrorPlot(object = SDDLSComp, error = "no.metrics"), regexp = "'error' provided is not valid" ) # incorrect number of colors expect_error( distErrorPlot( object = SDDLSComp, error = "AbsErr", colors = c("red") ), regexp = "Number of provided colors is not large enough" ) # incorrect X variable (x.by parameter) expect_error( distErrorPlot( object = SDDLSComp, error = "AbsErr", x.by = "no.variable" ), regexp = "'x.by' provided is not valid. The available options are: 'nCellTypes', 'CellType' and 'pBin'" ) # incorrect facet.by parameter expect_error( distErrorPlot( object = SDDLSComp, error = "AbsErr", facet.by = "no.variable" ), regexp = "'facet.by' provided is not valid. Available options are: 'nCellTypes', 'CellType' or NULL" ) # incorrect color.by parameter expect_error( distErrorPlot( object = SDDLSComp, error = "AbsErr", color.by = "no.variable" ), regexp = "'color.by' provided is not valid. The available options are: 'nCellTypes', 'CellType' and NULL" ) # incorrect type of plot expect_error( distErrorPlot( object = SDDLSComp, error = "AbsErr", type = "no.type" ), regexp = "'type' provided is not valid. The available options are: 'violinplot' and 'boxplot'" ) # filtering of single-cell profiles p1 <- distErrorPlot( object = SDDLSComp, error = "AbsErr", filter.sc = TRUE ) p2 <- distErrorPlot( object = SDDLSComp, error = "AbsErr", filter.sc = FALSE ) expect_true(nrow(p1$data) <= nrow(p2$data)) expect_true(all(grepl(pattern = "Spot", x = p1$data$Sample))) expect_false(all(grepl(pattern = "Spot", x = p2$data$Sample))) } ) # corrExpPredPlot test_that( desc = "corrExpPredPlot function", code = { # incorrect object: no evaluation metrics expect_error( corrExpPredPlot(object = SDDLS), regexp = "The provided object does not have evaluation metrics. Use 'calculateEvalMetrics' function" ) # incorrect number of colors expect_error( corrExpPredPlot( object = SDDLSComp, colors = c("red", "blue") ), regexp = "The number of provided colors is not large enough" ) # incorrect facet.by parameter expect_error( corrExpPredPlot( object = SDDLSComp, facet.by = "no.variable" ), regexp = "'facet.by' provided is not valid. The available options are: 'nCellTypes', 'CellType' or NULL" ) # incorrect color.by parameter expect_error( corrExpPredPlot( object = SDDLSComp, color.by = "no.variable" ), regexp = "'color.by' provided is not valid. The available options are: 'nCellTypes', 'CellType' or NULL" ) # incorrect correlation expect_error( corrExpPredPlot( object = SDDLSComp, error = "AbsErr", corr = "no.corr" ), regexp = "Argument 'corr' invalid. Only supported 'pearson', 'ccc' and 'both'" ) # filtering of single-cell profiles p1 <- corrExpPredPlot(object = SDDLSComp, filter.sc = TRUE) p2 <- corrExpPredPlot(object = SDDLSComp, filter.sc = FALSE) expect_true(nrow(p1$data) <= nrow(p2$data)) expect_true(all(grepl(pattern = "Spot", x = p1$data$Sample))) expect_false(all(grepl(pattern = "Spot", x = p2$data$Sample))) } ) # blandAltmanLehPlot test_that( desc = "blandAltmanLehPlot function", code = { # incorrect object: no evaluation metrics expect_error( blandAltmanLehPlot(object = SDDLS), regexp = "The provided object does not have evaluation metrics. Use 'calculateEvalMetrics' function" ) # incorrect number of colors expect_error( blandAltmanLehPlot( object = SDDLSComp, colors = c("red", "blue") ), regexp = "The number of provided colors is not large enough" ) # incorrect facet.by parameter expect_error( blandAltmanLehPlot( object = SDDLSComp, facet.by = "no.variable" ), regexp = "'facet.by' provided is not valid. The available options are: 'nCellTypes', 'CellType' or NULL" ) # incorrect color.by parameter expect_error( blandAltmanLehPlot( object = SDDLSComp, color.by = "no.variable" ), regexp = "'color.by' provided is not valid. The available options are: 'nCellTypes', 'CellType' or NULL" ) # filtering of single-cell profiles p1 <- blandAltmanLehPlot(object = SDDLSComp, filter.sc = TRUE) p2 <- blandAltmanLehPlot(object = SDDLSComp, filter.sc = FALSE) expect_true(nrow(p1$data) <= nrow(p2$data)) expect_true(all(grepl(pattern = "Spot", x = p1$data$Sample))) expect_false(all(grepl(pattern = "Spot", x = p2$data$Sample))) } ) # barErrorPlot test_that( desc = "barErrorPlot function", code = { # incorrect object: no evaluation metrics expect_error( barErrorPlot(object = SDDLS), regexp = "The provided object does not have evaluation metrics. Use 'calculateEvalMetrics' function" ) # incorrect by parameter expect_error( barErrorPlot(object = SDDLSComp, by = "no.variable"), regexp = "'by' provided is not valid. The available options are: 'nCellTypes', 'CellType'" ) # incorrect error parameter expect_error( barErrorPlot(object = SDDLSComp, by = "CellType", error = "no.error"), regexp = "'error' provided is not valid. The available errors are: 'MAE', 'MSE'" ) # incorrect dispersion parameter expect_error( barErrorPlot( object = SDDLSComp, by = "CellType", error = "MSE", dispersion = "no.disp" ), regexp = "'dispersion' provided is not valid" ) } )