test_that("mapReduce: file does not work correctly 1", { testInit("terra") rastDF <- needTerraAndRaster() data.table::setDTthreads(1) for (ii in seq(NROW(rastDF))) { pkg <- rastDF$pkg[ii] cls <- rastDF$class[ii] read <- eval(parse(text = rastDF$read[ii])) extFun <- eval(parse(text = rastDF$ext[ii])) ras <- read(extFun(0, 15, 0, 15), res = 1) ras[] <- NA set.seed(123) fullRas <- randomPolygons(ras, numTypes = 2) names(fullRas) <- "mapcodeAll" uniqueComms <- as.vector(unique(fullRas[])) reducedDT <- data.table( mapcodeAll = as.integer(uniqueComms), communities = sample(1:1000, length(uniqueComms)), biomass = as.integer(rnbinom(length(uniqueComms), mu = 4000, 0.4)) ) biomass <- rasterizeReduced(reducedDT, fullRas, "biomass") expect_equal(sort(as.vector(unique(biomass[]))), sort(reducedDT$biomass)) communities <- rasterizeReduced(reducedDT, fullRas, "communities") expect_equal(sort(as.vector(unique(communities[]))), sort(reducedDT$communities)) expect_true(sum(table(sort(fullRas[])) * reducedDT$communities) == sum(communities[])) ## test factor raster cls <- data.frame(id = sort(unique(as.vector(fullRas[])))) cls$Bclass <- LETTERS[cls$id] clsDT <- as.data.table(cls) if (is(fullRas, "SpatRaster")) { levels(fullRas) <- cls } else { fullRas <- raster::as.factor(fullRas) levs <- levels(fullRas)[[1]] levs$Bclass <- clsDT[id %in% unique(fullRas[]), "Bclass"] levels(fullRas) <- levs } reducedDT <- reducedDT[clsDT, on = "mapcodeAll==id"] reducedDT[, mapcodeAll := Bclass] biomass2 <- rasterizeReduced(reducedDT, fullRas, "biomass") expect_equal(biomass, biomass2) } }) test_that("mapReduce: file does not work correctly 2", { testInit("terra") rastDF <- needTerraAndRaster() rasOrig <- terra::rast(terra::ext(0,15,0,15), res=1) set.seed(321) # random fails here ... trying set.seed as a solution for (ii in seq(NROW(rastDF))) { pkg <- rastDF$pkg[ii] cls <- rastDF$class[ii] read <- eval(parse(text = rastDF$read[ii])) extFun <- eval(parse(text = rastDF$ext[ii])) ras <- read(rasOrig) fullRas <- randomPolygons(ras, numTypes = 5) names(fullRas) <- "mapcodeAll" uniqueComms <- as.numeric(unique(fullRas[])) reducedDT <- data.table( mapcodeAll=uniqueComms, communities=sample(1:1000, length(uniqueComms)), biomass=rnbinom(length(uniqueComms), mu = 4000, 0.4) ) biomass <- rasterizeReduced(reducedDT, fullRas, "biomass") expect_equal(sort(unique(as.numeric(terra::values(biomass)))), sort(reducedDT$biomass)) expect_equal(length(unique(as.numeric(terra::values(biomass)))), length(unique(as.numeric(terra::values(fullRas))))) setkey(reducedDT, biomass) communities <- rasterizeReduced(reducedDT, fullRas, "communities") expect_equal(sort(unique(as.numeric(terra::values(communities)))), sort(reducedDT$communities)) expect_equal(length(unique(as.numeric(terra::values(communities)))), length(unique(as.numeric(terra::values(fullRas))))) } })