set.seed(42) pbmc.file <- system.file('extdata', 'pbmc_raw.txt', package = 'Seurat') pbmc.test <- as.sparse(x = as.matrix(read.table(pbmc.file, sep = "\t", row.names = 1))) meta.data <- data.frame( a = rep(as.factor(c('a', 'b', 'c')), length.out = ncol(pbmc.test)), row.names = colnames(pbmc.test) ) object <- CreateSeuratObject( counts = pbmc.test, min.cells = 10, min.features = 30, meta.data = meta.data ) object <- NormalizeData(object) object <- SetIdent(object, value = 'a') group.by = "a" data <- FetchData(object = object, vars = rev(x = group.by)) data <- data[which(rowSums(x = is.na(x = data)) == 0), , drop = F] category.matrix.avg <- CreateCategoryMatrix(labels = data, method = 'average') category.matrix.sum <- CreateCategoryMatrix(labels = data, method = 'aggregate') test_that("CreateCategoryMatrix works for average and aggregate", { expect_equal(unname(colSums(category.matrix.avg)), c(1, 1, 1)) expect_equal(unname(colSums(category.matrix.sum)), c(27, 26, 24)) }) test_that("AverageExpression works for different layers", { #average expression on data layer is equal to log of average exponentiated data suppressWarnings(average.expression <- AverageExpression(object, layer = 'data')$RNA) counts.from.data.avg <- expm1(object[['RNA']]$data) %*% category.matrix.avg expect_equivalent( log1p(counts.from.data.avg), average.expression, tolerance = 1e-6 ) #average expression on counts layer is equal to average of counts suppressWarnings(average.counts <- AverageExpression(object, layer = 'counts')$RNA) avg.counts <- object[['RNA']]$data %*% category.matrix.avg expect_equivalent( avg.counts, average.counts, tolerance = 1e-6 ) #average expression on scale.data layer is equal to average of scale.data object <- ScaleData(object, features = rownames(object[['RNA']]$data)) suppressWarnings(average.scale.data <- AverageExpression(object, layer = 'scale.data')$RNA) avg.scale <- object[['RNA']]$scale.data %*% category.matrix.avg expect_equivalent( average.scale.data, avg.scale, tolerance = 1e-6 ) }) test_that("AverageExpression handles features properly", { features <- rownames(x = object)[1:10] average.expression <- AverageExpression(object, layer = 'data', features = features)$RNA expect_equal(rownames(x = average.expression), features) expect_warning(AverageExpression(object, layer = 'data', features = "BAD")) expect_warning(AverageExpression(object, layer = "data", features = c(features, "BAD"))) }) test_that("AverageExpression with return.seurat", { # counts avg.counts <- AverageExpression(object, layer = "counts", return.seurat = TRUE, verbose = FALSE) avg.counts.calc <- object[['RNA']]$counts %*% category.matrix.avg #test that counts are indeed equal to average counts expect_equivalent( as.matrix(avg.counts[['RNA']]$counts), as.matrix(avg.counts.calc), tolerance = 1e-6 ) expect_s4_class(object = avg.counts, "Seurat") avg.counts.mat <- AverageExpression(object, layer = 'counts')$RNA expect_equal(unname(as.matrix(LayerData(avg.counts[["RNA"]], layer = "counts"))), unname(as.matrix(avg.counts.mat))) avg.data <- LayerData(avg.counts[["RNA"]], layer = "data") #test that data returned is log1p of average counts expect_equivalent( as.matrix(log1p(avg.counts.mat)), as.matrix(avg.data), tolerance = 1e-6 ) #test that scale.data returned is scaled data avg.scale <- LayerData(avg.counts[["RNA"]], layer = "scale.data") expect_equal( avg.scale, ScaleData(avg.counts)[['RNA']]$scale.data, tolerance = 1e-6 ) # data avg.data <- AverageExpression(object, layer = "data", return.seurat = TRUE, verbose = FALSE) expect_s4_class(object = avg.data, "Seurat") avg.data.mat <- AverageExpression(object, layer = 'data')$RNA expect_equal(unname(as.matrix(LayerData(avg.data[["RNA"]], layer = "counts"))), unname(as.matrix(avg.data.mat))) expect_equal(unname(as.matrix(LayerData(avg.data[["RNA"]], layer = "data"))), as.matrix(unname(log1p(x = avg.data.mat)))) avg.scale <- LayerData(avg.data[["RNA"]], layer = "scale.data") expect_equal( avg.scale['MS4A1', ], c(a = -0.07823997, b = 1.0368218, c = -0.9585818), tolerance = 1e-6 ) expect_equal( avg.scale['SPON2', ], c(a = 0.1213127, b = 0.9338096, c = -1.0551222), tolerance = 1e-6 ) # scale.data object <- ScaleData(object = object, verbose = FALSE) avg.scale <- AverageExpression(object, layer = "scale.data", return.seurat = TRUE, verbose = FALSE) expect_s4_class(object = avg.scale, "Seurat") avg.scale.mat <- AverageExpression(object, layer = 'scale.data')$RNA expect_equal(unname(as.matrix(LayerData(avg.scale[["RNA"]], layer = "scale.data"))), unname(as.matrix(avg.scale.mat))) }) test.dat <- LayerData(object = object, layer = "data") rownames(x = test.dat) <- paste0("test-", rownames(x = test.dat)) object[["TEST"]] <- CreateAssayObject(data = test.dat) test_that("AverageExpression with multiple assays", { avg.test <- AverageExpression(object = object, assays = "TEST", layer = "data") expect_equal(names(x = avg.test), "TEST") expect_equal(length(x = avg.test), 1) expect_equivalent( avg.test[[1]]['test-KHDRBS1', 1:3], c(a = 10.329153, b = 92.287109, c = 5.620942), tolerance = 1e-6 ) expect_equivalent( avg.test[[1]]['test-DNAJB1', 1:3] , c(a = 42.32240, b = 15.94807, c = 15.96319), tolerance = 1e-6 ) avg.all <- AverageExpression(object = object, layer = "data") expect_equal(names(x = avg.all), c("RNA", "TEST")) expect_equal(length(x = avg.all), 2) }) meta.data.2 <- data.frame( b = rep(as.factor(c('c', 'd', 'e')), length.out = ncol(pbmc.test)), row.names = colnames(pbmc.test) ) object <- AddMetaData(object, meta.data.2) if(class(object[['RNA']]) == "Assay5") { test_that("AggregateExpression works with multiple layers", { object.split <- split(object, f = object$b) aggregate.split <- AggregateExpression(object.split, assay = "RNA") aggregate <- AggregateExpression(object, assay = "RNA") expect_equivalent( aggregate.split$RNA, aggregate$RNA, tolerance = 1e-6 ) avg.split <- AverageExpression(object.split, assay = "RNA") avg <- AverageExpression(object, assay = "RNA") expect_equivalent( avg.split$RNA, avg$RNA, tolerance = 1e-6 ) }) }