context("ordinationAxes") test_that("ordinationAxes: use", { # skip_on_cran() set.seed(42) n_traits <- 3 n_plots <- 10 num_species <- 10 x <- generate.Artificial.Data(n_species = num_species, n_traits = n_traits, n_communities = n_plots, occurence_distribution = 0.5, average_richness = 10, sd_richness = 1, mechanism_random = TRUE) data_species <- x$traits data_abundances <- x$abundances species <- scaleSpeciesvalues(data_species,n_traits) abundances <- data_abundances row.names(abundances) <- c(1:n_plots) abundances2 <- as.data.frame(abundances) species2 <- species[,c(2:(n_traits + 1))] #species2 <- cbind(names(abundances2),species2) species2 <- as.matrix(species2) row.names(species2) <- names(abundances2) # calculate observed FD values Ord <- ordinationAxes(x = species2, stand.x = FALSE) Ord <- ordinationAxes(x = species2, stand.x = TRUE) v2 <- species2[1,] v2[1:3] <- runif(3,0,1) Ord <- ordinationAxes(x = v2, stand.x = FALSE) v2[1:3] <- as.factor(c(1,1,2)) testthat::expect_warning( v2 <- as.dist(v2) ) testthat::expect_warning( Ord <- ordinationAxes(x = v2, stand.x = FALSE) ) set.seed(42) n_traits <- 3 n_plots <- 10 num_species <- 10 x <- generate.Artificial.Data(n_species = num_species, n_traits = n_traits, n_communities = n_plots, occurence_distribution = 0.5, average_richness = 10, sd_richness = 1, mechanism_random = TRUE) data_species <- x$traits data_species$trait4 <- c(rep("blue", 3), rep("red", 2), rep("yellow", 2), rep("black", 3)) n_traits <- 4 # calculate observed FD values Ord <- STEPCAM::ordinationAxes(x = data_species, stand.x = FALSE) set.seed(42) n_traits <- 1 n_plots <- 10 num_species <- 10 x <- generate.Artificial.Data(n_species = num_species, n_traits = n_traits, n_communities = n_plots, occurence_distribution = 0.5, average_richness = 10, sd_richness = 1, mechanism_random = TRUE) data_species <- x$traits data_species$trait1 <- c(rep("blue",3), rep("red",2), rep("yellow",2), rep("black",3)) # calculate observed FD values Ord <- ordinationAxes(x = data_species, stand.x = FALSE) data_species$trait1 <- as.factor(data_species$trait1) Ord <- ordinationAxes(x = data_species, stand.x = FALSE) n_traits <- 1 n_plots <- 10 num_species <- 10 x <- generate.Artificial.Data(n_species = num_species, n_traits = n_traits, n_communities = n_plots, occurence_distribution = 0.5, average_richness = 10, sd_richness = 1, mechanism_random = TRUE) data_species <- x$traits #data_species$trait1[4] <- NA v <- data_species$trait1 names(v) <- data_species$species Ord <- ordinationAxes(x = v, stand.x = FALSE) v[4] <- NA Ord <- ordinationAxes(x = v, stand.x = FALSE) #character vector v <- c(rep("blue",3), rep("red",2), rep("yellow",2), rep("black",3)) names(v) <- data_species$species testthat::expect_warning( Ord <- ordinationAxes(x = v, stand.x = FALSE) ) #character vector with one missing value v[4] <- NA testthat::expect_warning( Ord <- ordinationAxes(x = v, stand.x = FALSE) ) #vector factor v <- as.factor(v) testthat::expect_warning( Ord <- ordinationAxes(x = v, stand.x = FALSE) ) #with missing value v[4] <- NA testthat::expect_warning( Ord <- ordinationAxes(x = v, stand.x = FALSE) ) v <- data_species$trait1 names(v) <- data_species$species v <- as.data.frame(v) Ord <- ordinationAxes(x = v, stand.x = FALSE) v <- data_species$trait1 names(v) <- data_species$species v <- as.data.frame(v) v$v <- c(rep("blue",3),rep("red",2),rep("yellow",2),rep("black",3)) testthat::expect_warning( Ord <- ordinationAxes(x = v, stand.x = FALSE) ) v <- data_species$trait1 names(v) <- data_species$species v <- as.data.frame(v) v$v <- c(rep("blue",3),rep("red",2),rep("yellow",2),rep("black",3)) v$v <- as.factor(v$v) testthat::expect_warning( Ord <- ordinationAxes(x = v, stand.x = FALSE) ) }) test_that("ordinationAxes: abuse", { set.seed(42) n_traits <- 3 n_plots <- 10 num_species <- 10 x <- generate.Artificial.Data(n_species = num_species, n_traits = n_traits, n_communities = n_plots, occurence_distribution = 0.5, average_richness = 10, sd_richness = 1, mechanism_random = TRUE) data_species <- x$traits data_abundances <- x$abundances species <- scaleSpeciesvalues(data_species,n_traits) abundances <- data_abundances row.names(abundances) <- c(1:n_plots) abundances2 <- as.data.frame(abundances) species2 <- species[,c(2:(n_traits + 1))] #species2 <- cbind(names(abundances2),species2) species2 <- as.matrix(species2) row.names(species2) <- names(abundances2) #add some NA values species2[5,1] <- NA species2[7,2] <- NA testthat::expect_error( Ord <- ordinationAxes(x = species2, stand.x = FALSE) ) })