# # # test_local <- FALSE # FALSE for CRAN # # if (test_local) { # # ssn_create_distmat( # ssn.object = mf04p, # predpts = c("pred1km", "CapeHorn"), # overwrite = TRUE # ) # # # set a seed # set.seed(2) # # test_that("ssn_glm models fit Gaussian", { # ssn_mod <- ssn_glm(Summer_mn ~ ELEV_DEM, # family = "gaussian", mf04p, tailup_type = "exponential", # taildown_type = "exponential", euclid_type = "exponential", # nugget_type = "nugget", additive = "afvArea" # ) # expect_s3_class(ssn_mod, "ssn_lm") # expect_vector(predict(ssn_mod, "pred1km")) # }) # # test_that("ssn_glm models fit poisson", { # ssn_mod <- ssn_glm(round(Summer_mn) ~ ELEV_DEM, # family = "poisson", mf04p, tailup_type = "exponential", # taildown_type = "exponential", euclid_type = "exponential", # nugget_type = "nugget", additive = "afvArea" # ) # expect_s3_class(ssn_mod, "ssn_glm") # expect_vector(predict(ssn_mod, "pred1km")) # }) # # test_that("ssn_glm models fit negative binomial", { # ssn_mod <- ssn_glm(round(Summer_mn) ~ ELEV_DEM, # family = "nbinomial", mf04p, tailup_type = "exponential", # nugget_type = "nugget", additive = "afvArea" # ) # expect_s3_class(ssn_mod, "ssn_glm") # expect_vector(predict(ssn_mod, "pred1km")) # }) # # test_that("ssn_glm models fit binomial", { # ssn_mod <- ssn_glm(Summer_mn > 11 ~ ELEV_DEM, # family = "binomial", mf04p, tailup_type = "exponential", # taildown_type = "exponential", euclid_type = "exponential", # nugget_type = "nugget", additive = "afvArea", estmethod = "ml" # ) # expect_s3_class(ssn_mod, "ssn_glm") # expect_vector(predict(ssn_mod, "pred1km")) # }) # # test_that("ssn_glm models fit beta", { # mf04p$obs$betavar <- runif(NROW(mf04p$obs), min = 0.25, max = 0.75) # ssn_mod <- ssn_glm(betavar ~ ELEV_DEM, # family = "beta", mf04p, # taildown_type = "exponential", euclid_type = "exponential", # nugget_type = "nugget" # ) # expect_s3_class(ssn_mod, "ssn_glm") # expect_vector(predict(ssn_mod, "pred1km")) # }) # # test_that("ssn_glm models fit gamma", { # ssn_mod <- ssn_glm(Summer_mn ~ ELEV_DEM, # family = "Gamma", mf04p, tailup_type = "exponential", # nugget_type = "none", additive = "afvArea" # ) # expect_s3_class(ssn_mod, "ssn_glm") # expect_vector(predict(ssn_mod, "pred1km")) # }) # # test_that("ssn_glm models fit inverse gaussian", { # ssn_mod <- ssn_glm(Summer_mn ~ ELEV_DEM, mf04p, inverse.gaussian, # euclid_type = "exponential", # nugget_type = "nugget", # ) # expect_s3_class(ssn_mod, "ssn_glm") # expect_vector(predict(ssn_mod, "pred1km")) # }) # # # test_that("random effects work", { # ssn_mod <- ssn_glm(Summer_mn > 11 ~ ELEV_DEM, mf04p, # family = "binomial", tailup_type = "exponential", # taildown_type = "exponential", # nugget_type = "nugget", additive = "afvArea", # random = ~ as.factor(netID) # ) # expect_s3_class(ssn_mod, "ssn_glm") # expect_vector(predict(ssn_mod, "pred1km")) # }) # # test_that("partition factors work", { # ssn_mod <- ssn_glm(Summer_mn > 11 ~ ELEV_DEM, mf04p, # family = "binomial", # taildown_type = "exponential", # partition_factor = ~ as.factor(netID) # ) # expect_s3_class(ssn_mod, "ssn_glm") # expect_vector(predict(ssn_mod, "pred1km")) # }) # # test_that("anisotropy works", { # ssn_mod <- ssn_glm(Summer_mn > 11 ~ ELEV_DEM, mf04p, # family = "binomial", tailup_type = "exponential", # euclid_type = "exponential", # nugget_type = "nugget", additive = "afvArea", # anisotropy = TRUE # ) # expect_s3_class(ssn_mod, "ssn_glm") # expect_vector(predict(ssn_mod, "pred1km")) # }) # # test_that("fixing parameters works", { # tu <- tailup_initial("exponential", de = 1, known = "de") # ssn_mod <- ssn_glm(Summer_mn > 11 ~ ELEV_DEM, mf04p, # family = "binomial", tailup_initial = tu, # taildown_type = "exponential", # nugget_type = "nugget", additive = "afvArea" # ) # expect_s3_class(ssn_mod, "ssn_glm") # expect_vector(predict(ssn_mod, "pred1km")) # expect_equal(coef(ssn_mod, type = "tailup")[["de"]], 1) # }) # # test_that("missing data works", { # mf04p$obs$Summer_mn[1] <- NA # ssn_mod <- ssn_glm(Summer_mn > 11 ~ ELEV_DEM, mf04p, # family = "binomial", # taildown_type = "exponential", # nugget_type = "nugget" # ) # expect_s3_class(ssn_mod, "ssn_glm") # expect_vector(predict(ssn_mod, "pred1km")) # expect_vector(predict(ssn_mod, ".missing")) # }) # # # previously from test-extras # test_that("extra test fits", { # ssn_mod <- ssn_glm(Summer_mn > 11 ~ ELEV_DEM, mf04p, family = "binomial", # tailup_type = "exponential", additive = "afvArea", # estmethod = "ml") # expect_s3_class(ssn_mod, "ssn_glm") # # ssn_mod <- ssn_glm(round(Summer_mn) ~ ELEV_DEM, mf04p, family = "poisson", # taildown_type = "exponential") # expect_s3_class(ssn_mod, "ssn_glm") # # ssn_mod <- ssn_glm(round(Summer_mn) ~ ELEV_DEM, mf04p, family = "nbinomial", # euclid_type = "exponential") # expect_s3_class(ssn_mod, "ssn_glm") # # ssn_mod <- ssn_glm(Summer_mn ~ ELEV_DEM, mf04p, family = "inverse.gaussian", # tailup_type = "exponential", additive = "afvArea") # expect_s3_class(ssn_mod, "ssn_glm") # # ssn_mod <- ssn_glm(ratio ~ ELEV_DEM, mf04p, family = "beta", # taildown_type = "exponential") # expect_s3_class(ssn_mod, "ssn_glm") # }) # }