test_that("prediction works", { # Copy the mf04p .ssn data to a local directory and read it into R # When modeling with your .ssn object, you will load it using the relevant # path to the .ssn data on your machine copy_lsn_to_temp() temp_path <- paste0(tempdir(), "/MiddleFork04.ssn") mf04p <- ssn_import( temp_path, predpts = c("pred1km", "CapeHorn", "Knapp"), overwrite = TRUE ) ssn_create_distmat( ssn.object = mf04p, predpts = c("pred1km"), overwrite = TRUE, among_predpts = TRUE ) ssn_create_distmat( ssn.object = mf04p, predpts = c("CapeHorn", "Knapp"), overwrite = TRUE, only_predpts = TRUE ) ssn_mod1 <- ssn_lm(Summer_mn ~ ELEV_DEM, mf04p, tailup_type = "exponential", taildown_type = "exponential", euclid_type = "exponential", nugget_type = "nugget", additive = "afvArea" ) expect_vector(predict(ssn_mod1, "CapeHorn")) expect_vector(predict(ssn_mod1, "pred1km", block = TRUE)) expect_true(inherits(predict(ssn_mod1, "Knapp", interval = "confidence"), "matrix")) expect_true(inherits(predict(ssn_mod1, "pred1km", interval = "prediction", level = 0.9), "matrix")) expect_type(predict(ssn_mod1), type = "list") ssn_mod2 <- ssn_glm(Summer_mn ~ ELEV_DEM, mf04p, "Gamma", tailup_type = "exponential", taildown_type = "exponential", euclid_type = "exponential", nugget_type = "nugget", additive = "afvArea" ) expect_vector(predict(ssn_mod2, "Knapp", type = "link")) expect_true(inherits(predict(ssn_mod2, "pred1km", interval = "confidence", level = 0.9), "matrix")) expect_true(inherits(predict(ssn_mod2, "CapeHorn", interval = "prediction"), "matrix")) expect_type(predict(ssn_mod2), type = "list") })