test_that("blank test", { expect_null(NULL) }) test_local <- FALSE # FALSE for CRAN if (test_local) { # Copy the mf04p .ssn data to a local directory and read it into R # When modeling with your .ssn object, you will load it using the relevant # path to the .ssn data on your machine copy_lsn_to_temp() temp_path <- paste0(tempdir(), "/MiddleFork04.ssn") mf04p <- ssn_import( temp_path, predpts = c("pred1km", "CapeHorn", "Knapp"), overwrite = TRUE ) ssn_create_distmat( ssn.object = mf04p, predpts = c("pred1km", "CapeHorn", "Knapp"), overwrite = TRUE ) # set a seed set.seed(2) test_that("ssn_glm models fit Gaussian", { ssn_mod <- ssn_glm(Summer_mn ~ ELEV_DEM, family = "gaussian", mf04p, tailup_type = "exponential", taildown_type = "exponential", euclid_type = "exponential", nugget_type = "nugget", additive = "afvArea" ) expect_s3_class(ssn_mod, "ssn_lm") expect_vector(predict(ssn_mod, "pred1km")) }) test_that("ssn_glm models fit poisson", { ssn_mod <- ssn_glm(round(Summer_mn) ~ ELEV_DEM, family = "poisson", mf04p, tailup_type = "exponential", taildown_type = "exponential", euclid_type = "exponential", nugget_type = "nugget", additive = "afvArea" ) expect_s3_class(ssn_mod, "ssn_glm") expect_vector(predict(ssn_mod, "pred1km")) }) test_that("ssn_glm models fit negative binomial", { ssn_mod <- ssn_glm(round(Summer_mn) ~ ELEV_DEM, family = "nbinomial", mf04p, tailup_type = "exponential", nugget_type = "nugget", additive = "afvArea" ) expect_s3_class(ssn_mod, "ssn_glm") expect_vector(predict(ssn_mod, "pred1km")) }) test_that("ssn_glm models fit binomial", { ssn_mod <- ssn_glm(Summer_mn > 11 ~ ELEV_DEM, family = "binomial", mf04p, tailup_type = "exponential", taildown_type = "exponential", euclid_type = "exponential", nugget_type = "nugget", additive = "afvArea", estmethod = "ml" ) expect_s3_class(ssn_mod, "ssn_glm") expect_vector(predict(ssn_mod, "pred1km")) }) test_that("ssn_glm models fit beta", { mf04p$obs$betavar <- runif(NROW(mf04p$obs), min = 0.25, max = 0.75) ssn_mod <- ssn_glm(betavar ~ ELEV_DEM, family = "beta", mf04p, taildown_type = "exponential", euclid_type = "exponential", nugget_type = "nugget" ) expect_s3_class(ssn_mod, "ssn_glm") expect_vector(predict(ssn_mod, "pred1km")) }) test_that("ssn_glm models fit gamma", { ssn_mod <- ssn_glm(Summer_mn ~ ELEV_DEM, family = "Gamma", mf04p, tailup_type = "exponential", nugget_type = "none", additive = "afvArea" ) expect_s3_class(ssn_mod, "ssn_glm") expect_vector(predict(ssn_mod, "pred1km")) }) test_that("ssn_glm models fit inverse gaussian", { ssn_mod <- ssn_glm(Summer_mn ~ ELEV_DEM, mf04p, inverse.gaussian, euclid_type = "exponential", nugget_type = "nugget", ) expect_s3_class(ssn_mod, "ssn_glm") expect_vector(predict(ssn_mod, "pred1km")) }) test_that("random effects work", { ssn_mod <- ssn_glm(Summer_mn > 11 ~ ELEV_DEM, mf04p, family = "binomial", tailup_type = "exponential", taildown_type = "exponential", nugget_type = "nugget", additive = "afvArea", random = ~ as.factor(netID) ) expect_s3_class(ssn_mod, "ssn_glm") expect_vector(predict(ssn_mod, "pred1km")) }) test_that("partition factors work", { ssn_mod <- ssn_glm(Summer_mn > 11 ~ ELEV_DEM, mf04p, family = "binomial", taildown_type = "exponential", partition_factor = ~ as.factor(netID) ) expect_s3_class(ssn_mod, "ssn_glm") expect_vector(predict(ssn_mod, "pred1km")) }) test_that("anisotropy works", { ssn_mod <- ssn_glm(Summer_mn > 11 ~ ELEV_DEM, mf04p, family = "binomial", tailup_type = "exponential", euclid_type = "exponential", nugget_type = "nugget", additive = "afvArea", anisotropy = TRUE ) expect_s3_class(ssn_mod, "ssn_glm") expect_vector(predict(ssn_mod, "pred1km")) }) test_that("fixing parameters works", { tu <- tailup_initial("exponential", de = 1, known = "de") ssn_mod <- ssn_glm(Summer_mn > 11 ~ ELEV_DEM, mf04p, family = "binomial", tailup_initial = tu, taildown_type = "exponential", nugget_type = "nugget", additive = "afvArea" ) expect_s3_class(ssn_mod, "ssn_glm") expect_vector(predict(ssn_mod, "pred1km")) expect_equal(coef(ssn_mod, type = "tailup")[["de"]], 1) }) test_that("missing data works", { mf04p$obs$Summer_mn[1] <- NA ssn_mod <- ssn_glm(Summer_mn > 11 ~ ELEV_DEM, mf04p, family = "binomial", taildown_type = "exponential", nugget_type = "nugget" ) expect_s3_class(ssn_mod, "ssn_glm") expect_vector(predict(ssn_mod, "pred1km")) expect_vector(predict(ssn_mod, ".missing")) }) }