# Copy the mf04p .ssn data to a local directory and read it into R # When modeling with your .ssn object, you will load it using the relevant # path to the .ssn data on your machine copy_lsn_to_temp() temp_path <- paste0(tempdir(), "/MiddleFork04.ssn") mf04p <- ssn_import( temp_path, predpts = c("pred1km", "CapeHorn", "Knapp"), overwrite = TRUE ) ssn_create_distmat( ssn.object = mf04p, predpts = c("pred1km"), overwrite = TRUE, among_predpts = TRUE ) # fit an example model ssn_mod <- ssn_lm(Summer_mn ~ ELEV_DEM, mf04p, tailup_type = "exponential", additive = "afvArea") # create an example initial object initial_object_val <- get_initial_object( tailup_type = "exponential", taildown_type = "exponential", euclid_type = "exponential", nugget_type = "nugget", tailup_initial = NULL, taildown_initial = NULL, euclid_initial = NULL, nugget_initial = NULL ) test_that("dist object output appropriate", { # create distance object object <- get_dist_object( ssn.object = mf04p, initial_object = initial_object_val, additive = "afvArea", anisotropy = FALSE ) # store names and dimensions names_vec <- c( "distjunc_mat", "mask_mat", "a_mat", "b_mat", "hydro_mat", "w_mat", "euclid_mat", "network_index", "pid", "dist_order", "inv_dist_order" ) n_obs <- NROW(mf04p$obs) n_obs_dim <- c(n_obs, n_obs) # run test on object structure expect_true(identical(names(object), names_vec)) expect_equal(dim(object$distjunc_mat), n_obs_dim) expect_equal(dim(object$mask_mat), n_obs_dim) expect_equal(dim(object$a_mat), n_obs_dim) expect_equal(dim(object$b_mat), n_obs_dim) expect_equal(dim(object$hydro_mat), n_obs_dim) expect_equal(dim(object$w_mat), n_obs_dim) expect_equal(dim(object$euclid_mat), n_obs_dim) expect_true(is.vector(object$network_index)) expect_true(is.vector(object$pid)) expect_true(is.vector(object$dist_order)) expect_true(is.vector(object$inv_dist_order)) }) test_that("dist pred object output appropriate", { # create distance object dist_pred_object <- get_dist_pred_object( object = ssn_mod, newdata_name = "pred1km", initial_object = initial_object_val ) # store names and dimensions names_vec <- c( "distjunca_pred_mat", "distjuncb_pred_mat", "mask_pred_mat", "a_pred_mat", "b_pred_mat", "hydro_pred_mat", "w_pred_mat", "euclid_pred_mat", "network_index", "pid", "dist_order", "inv_dist_order", "network_index_pred", "pid_pred", "dist_order_pred", "inv_dist_order_pred" ) n_obs <- NROW(ssn_mod$ssn.object$obs) n_pred <- NROW(ssn_mod$ssn.object$preds[["pred1km"]]) n_dim <- c(n_pred, n_obs) # run test on object structure expect_true(identical(names(dist_pred_object), names_vec)) expect_equal(dim(dist_pred_object$distjunca_pred_mat), n_dim) expect_equal(dim(t(dist_pred_object$distjuncb_pred_mat)), n_dim) expect_equal(dim(dist_pred_object$mask_pred_mat), n_dim) expect_equal(dim(dist_pred_object$a_pred_mat), n_dim) expect_equal(dim(dist_pred_object$b_pred_mat), n_dim) expect_equal(dim(dist_pred_object$hydro_pred_mat), n_dim) expect_equal(dim(dist_pred_object$w_pred_mat), n_dim) expect_equal(dim(dist_pred_object$euclid_pred_mat), n_dim) expect_true(is.vector(dist_pred_object$network_index)) expect_true(is.vector(dist_pred_object$pid)) expect_true(is.vector(dist_pred_object$dist_order)) expect_true(is.vector(dist_pred_object$inv_dist_order)) expect_true(is.vector(dist_pred_object$network_index_pred)) expect_true(is.vector(dist_pred_object$pid_pred)) expect_true(is.vector(dist_pred_object$dist_order_pred)) expect_true(is.vector(dist_pred_object$inv_dist_order_pred)) }) test_that("dist pred bk object output appropriate", { # create distance object object <- get_dist_predbk_object( object = ssn_mod, newdata_name = "pred1km", initial_object = initial_object_val ) # store names and dimensions names_vec <- c( "distjunc_mat", "mask_mat", "a_mat", "b_mat", "hydro_mat", "w_mat", "euclid_mat", "network_index", "pid", "dist_order", "inv_dist_order" ) n_pred <- NROW(mf04p$preds[["pred1km"]]) n_pred_dim <- c(n_pred, n_pred) # run test on object structure expect_true(identical(names(object), names_vec)) expect_equal(dim(object$distjunc_mat), n_pred_dim) expect_equal(dim(object$mask_mat), n_pred_dim) expect_equal(dim(object$a_mat), n_pred_dim) expect_equal(dim(object$b_mat), n_pred_dim) expect_equal(dim(object$hydro_mat), n_pred_dim) expect_equal(dim(object$w_mat), n_pred_dim) expect_equal(dim(object$euclid_mat), n_pred_dim) expect_true(is.vector(object$network_index)) expect_true(is.vector(object$pid)) expect_true(is.vector(object$dist_order)) expect_true(is.vector(object$inv_dist_order)) })