# Copy the mf04p .ssn data to a local directory and read it into R # When modeling with your .ssn object, you will load it using the relevant # path to the .ssn data on your machine copy_lsn_to_temp() temp_path <- paste0(tempdir(), "/MiddleFork04.ssn") mf04p <- ssn_import( temp_path, predpts = c("pred1km", "CapeHorn", "Knapp"), overwrite = TRUE ) # fit an example model ssn_mod <- ssn_lm(Summer_mn ~ ELEV_DEM, mf04p, tailup_type = "exponential", additive = "afvArea") initial_object_val <- get_initial_object( tailup_type = "exponential", taildown_type = "exponential", euclid_type = "exponential", nugget_type = "nugget", tailup_initial = NULL, taildown_initial = NULL, euclid_initial = NULL, nugget_initial = NULL ) ################################################################################ ############################ check_optim_method ################################################################################ test_that("check optim method works", { optim_dotlist <- get_optim_dotlist() optim_par <- c(a = 1, b = 2) optim_dotlist_val <- check_optim_method(optim_par, optim_dotlist) expect_equal(optim_dotlist_val$method, optim_dotlist$method) expect_equal(optim_dotlist_val$lower, optim_dotlist$lower) expect_equal(optim_dotlist_val$upper, optim_dotlist$upper) optim_par <- c(a = 1) optim_dotlist_val <- check_optim_method(optim_par, optim_dotlist) expect_equal(optim_dotlist_val$method, "Brent") expect_equal(optim_dotlist_val$lower, -50) expect_equal(optim_dotlist_val$upper, 50) }) ################################################################################ ############################ params, cov_matrix, cov_vector work ################################################################################ test_that("params, cov_matrix, cov_vector work", { tailup_par <- tailup_params("exponential", 1, 1) taildown_par <- taildown_params("exponential", 1, 1) euclid_par <- euclid_params("exponential", 1, 1, 0, 1) nugget_par <- nugget_params("nugget", 0.1) # create dist object dist_object <- get_dist_object( ssn.object = mf04p, initial_object = initial_object_val, additive = "afvArea", anisotropy = FALSE ) n_obs <- NROW(mf04p$obs) n_obs_dim <- c(n_obs, n_obs) expect_equal(dim(cov_matrix(tailup_par, dist_object)), n_obs_dim) expect_equal(dim(cov_matrix(taildown_par, dist_object)), n_obs_dim) expect_equal(dim(cov_matrix(euclid_par, dist_object, anisotropy = FALSE)), n_obs_dim) expect_equal(dim(cov_matrix(nugget_par, dist_object, de_scale = 0)), n_obs_dim) # create distance object dist_pred_object <- get_dist_pred_object( object = ssn_mod, newdata_name = "pred1km", initial_object = initial_object_val ) n_obs <- NROW(ssn_mod$ssn.object$obs) n_pred <- NROW(ssn_mod$ssn.object$preds[["pred1km"]]) n_dim <- c(n_pred, n_obs) expect_equal(dim(cov_vector(tailup_par, dist_pred_object)), n_dim) expect_equal(dim(cov_vector(taildown_par, dist_pred_object)), n_dim) expect_equal(dim(cov_vector(euclid_par, dist_pred_object, anisotropy = FALSE)), n_dim) })